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The Aristotelian relations of contradiction (CD), contrariety (C), subcontrariety (SC) and subalternation (SA)
have been argued to be conceptually independent of the duality relations of internal negation (IN), external negation
(EN) and dual negation (DN) [1, 2, 4]. For any fragment of 4 formulas (from a logical language L for a logical
system S) which is closed under negation — i.e. which consists of two pairs of contradictories — the former set
of relations can be diagrammatically represented as a (possibly degenerate) Aristotelian square, whereas the latter
set gives rise to a (possibly degenerate) duality square. Some such fragments only constitute an Aristotelian square
— as is the case for the numerical quantifiers in Figure 1 —, whereas others yield both an Aristotelian and a
duality square simultaneously — as is the case for the quantifiers of Standard Predicate Logic in Figure 2. The

set of Aristotelian relations is fundamentally hybrid : (i) CD, C and SC are symmetric and defined in terms of
being true/false together, whereas SA is not symmetric and defined in terms of truth propagation [5]; and (ii)
CD is a functional relation, but C, SC and SA are not. All duality relations, by contrast, are symmetric and
functional. A further mismatch concerns the fact that the single duality relation of IN seems to correspond to two
Aristotelian relations, viz. either C or SC. On a more abstract level, Aristotelian relations have been shown to be
highly logic-sensitive, whereas duality relations are insensitive to the underlying logic [2, 5].

The central aim of the presentation is to chart which of the above logical relations hold between quantificational
formulas expressing the notion of proportionality. Two types of expressions will be distinguished: (i) explicit
proportionals such as at least two thirds of the A’s are B or less than 20 percent of the A’s are B, in which the
proportion is explicitly referred to in terms of fractions or percentages; and (ii) implicit proportionals such as a
minority/majority of the A’s are B, in which the actual proportion remains implicit. Explicit proportionals will be

argued to give rise to (at least) two constellations: (i) the square in Figure 3 corresponds to that in Figure 1 in being
an Aristotelian square only, wheras (ii) the square in Figure 4 corresponds to that in Figure 2 in being both an
Aristotelian and a duality square. Implicit proportionals, then, automatically yield ‘double’ squares, as in Figure
5. The analysis is carried out withing the framework of Logical Geometry (www.logicalgeometry.org) and makes
use of so-called bitstring representations, which are compact combinatorial representations of the denotations of
the various types of proportional expressions that are based on (scalar) partitionings of logical space. Finally, since
these proportional expressions are generalised quantifiers, their monotonicity properties will also be studied [3].

References

[1] Demey, L.: Algebraic aspects of duality diagrams. In: Cox, P.T., Plimmer, B., Rodgers, P. (eds.) Diagrammatic
Representation and Inference, pp. 300–302. LNCS 7352, Springer (2012)

[2] Demey, L., Smessaert, H.: Metalogical decorations of logical diagrams. Logica Universalis (Forthcoming)

[3] Smessaert, H.: Monotonicity properties of comparative determiners. Linguistics and Philosophy 19(3), 295–336
(1996)

[4] Smessaert, H.: The classical Aristotelian hexagon versus the modern duality hexagon. Logica Universalis 6,
171–199 (2012)

[5] Smessaert, H., Demey, L.: Logical geometries and information in the square of opposition. Journal of Logic,
Language and Information 23, 527–565 (2014)

1

http://www.logicalgeometry.org

