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0.1 Aims and claims of the talk

=> integrate three lines of recent inquiry:

1. duality in Piaget & Gottschalk ‘PG’ (NOT workshop, Nice 2010)

2. algebra for Set Inclusion (Alessio, Nice 2011)

3 “hybrid’ geometries (Lorenz, Nancy 2011/Bochum 2012)

=> Present the Set Inclusion relations/Algebra as a new decoration for â3,

the tetrahexahedron (THH), or the rhombic dodecahedron (RDH)

1. two ‘classical’ decorations propositional connectives

S5 modalities

2. two recent decorations

Public Announcement Logic (Lorenz, Corte 2010)

Sherwood-Czezowski singular propositions (LNAT2, Diagrams)

=> Use the Set Inclusion Algebra to argue that the PG Duality Geometry

is (1) hybrid and (2) degenerate, and propose two ‘solutions’:

(1) decompose the notion of duality into different geometries

(2) distinguish duality squares from duality crosses
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=> Decompose Duality geometry in two steps:

1. distinction between

syntax: operations on formulae => Reversibility Geometry

semantics: operations on bitstrings

2. within operations on bitstrings distinction between

‘horizontal’ mirroring operations => Flip Geometry

‘vertical’ polarity operations => Switch Geometry

=> Switch Geometry <= Duality Geometry => Flip Geometry

     4 squares                  2 squares                   1 square

Switch Geom >? Reversibility Geom >? Duality Geom > Flip Geom 

     4 squares             4/3/2 squares           2 squares         1 square
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0.2 Overview of the talk

1 The Logical Geometry of Set Inclusion

1.1 The Set Inclusion tripartition

1.2 The eight standard Set Inclusion relations

1.3 The Boolean closure of Set Inclusion

1.4 Set Inclusion in RDH and beyond

2 Duality and reversibility in the Set Inclusion Algebra

2.1 Duality in Piaget and Gottschalk

2.2 Duality and symmetry

2.3 Duality geometry: squares and crosses

2.4 Aristotelian geometry: squares and crosses

2.5 Reversibility geometry: squares

2.6 Flip geometry: squares, bars and loops

2.7 Switch geometry: squares

2.8 The hybrid nature of the Duality Geometry

2.9 Duality and reversibility with the Propositional Connectives
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3 Duality squares and crosses from 2D to 3D

3.1 Duality vs Aristotelian relations in square/hexagon

3.2 Aristotelian relations in RDH

3.3 Duality relations in 2D: Piaget

3.4 Duality relations in 3D: RDH

4 Conclusion and prospects
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1 The Logical Geometry of Set Inclusion

1.1 The Set Inclusion tripartition

“the problem”: cfr. Alessio: 

strict order relations: <, >, #, $ (=, �) 

yield an Aristotelian square and a Sesmat-Blanché hexagon

Set Inclusion relations d, e, f, g,(=, �)

do NOT yield a similar Aristotelian square nor Sesmat-Blanché hexagon 

“the cause”: Set Inclusion works with 8 basic relations instead of 4/6: 

d, e, f, g, ç, è, é, ê

“the aim”: Establish the Logical Geometry of Set Inclusion

“the two steps”:

=> define the semantics of the eight basic relations of Set Inclusion

=> define the Boolean closure of these eight relations
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Figure 1  Set Inclusion tripartition

3 areas => 3 conditions on emptiness

=> area outside A c B is irrelevant for Set Inclusion:

(1) [á = 0] /  A \ B = i [á = 1] /  A \ B � i

[â = 0] /  A 1 B = i [â = 1] /  A 1 B � i

[ã = 0] /  B \ A = i [ã = 1] /  B \ A � i
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p  semantics: 3 questions, one for each area, with 2 answers, empty or notq

2  = 8 constellations of combinations of 3 answers3

á â ã

Ó1 0 0 0 [A = i] & [B = i]

Ó2 0 0 1 [A = i]

Ó3 0 1 0 ‘mutual inclusion’

Ó4 0 1 1 ‘proper inclusion left-to-right’

Ó5 1 0 0 [B = i]

Ó6 1 0 1 ‘mutual exclusion’

Ó7 1 1 0 ‘proper inclusion right-to-left’

Ó8 1 1 1 ‘no inclusion, no mutual exclusion’

Table 1 Eight State descriptions for the Set Inclusion tripartition

grey rows: 3 out of the 8 states are ‘trivial’:at least one of the sets is

empty => the 5 Gergonne relations (cfr. Ferdinando/Alessio)
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1.2 The eight standard Set Inclusion relations

Interpret 8 states as combinations of truth-values = rows in truth table

Define the 8 relations of Set Inclusion in terms of columns in truth table: in

which of the 8 states (including the trivial ones) does a given relation hold? 

áâã

R1

A d B

R2

A ç B

R3

A f B

R4

A é B

R5

A e B

R6

A è B

R7

A g B

R8

A ê B

Ó1 000 0 1 1 0 0 1 1 0

Ó2 001 1 0 1 0 0 1 0 1

Ó3 010 0 1 1 0 0 1 1 0

Ó4 011 1 0 1 0 0 1 0 1

Ó5 100 0 1 0 1 1 0 1 0

Ó6 101 0 1 0 1 0 1 0 1

Ó7 110 0 1 0 1 1 0 1 0

Ó8 111 0 1 0 1 0 1 0 1

Table 2  Truth Table for the 8 basic relations of Set Inclusion
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grey rows: reduction from eight to four bits ~ redundancy

whether or not the intersection area is empty is irrelevant for the semantics

of Set Inclusion:

(2) [v(Ó1) = v(Ó3)] & [v(Ó2) = v(Ó4)] & [v(Ó5) = v(Ó7)] & [v(Ó6) = v(Ó8)]

(3) R1 A d B 01010000 => 0100

R2 A ç B 10101111 => 1011

R3 A f B 11110000 => 1100

R4 A é B 00001111 => 0011

R5 A e B 00001010 => 0010

R6 A è B 11110101 => 1101

R7 A g B 10101010 => 1010

R8 A ê B 01010101 => 0101

negation relations = reversal of value in all positions
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entailment relations: double lattice: ‘gamma’-structure in NOT (Moretti)

central symmetry around black dot = negation

Figure 2  Entailment relations between the 8 basic relations of Set Inclusion
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1.3 The Boolean closure of Set Inclusion

Boolean combinations among 4 members of 1 lattice = trivial

entailment: join is smallest, meet is biggest

Non-trivial = check meet and join between each of 4 relations in left lattice

and each of 4 relations in right lattice => 4 x 4 x 2 = 32

left lattice in Figure 2 = 4 rows of Tables 3/4, right lattice in Figure 2 = 4

colums of Tables 3/4
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v A e B   0010 A g B   1010 A é B   0011 A ç B   1011

A d B   0100 0000 0000 0000 0000

A f B   1100 0000 1000 0000 1000

A ê B   0101 0000 0000 0001 0001

A è B   1101 0000 1000 0001 1001

w A e B   0010 A g B   1010 A é B   0011 A ç B   1011

A d B   0100 0110 1110 0111 1111

A f B   1100 1110 1110 1111 1111

A ê B   0101 0111 1111 0111 1111

A è B   1101 1111 1111 1111 1111

Table 3  Non-trivial meet/join operations on the 8 basic relations of Set Inclusion

6 non-trivial cases: 2 equiv. classes of 1 green formula (=2) (4a-b)

2 equiv. classes of 3 yellow formulae (= 6) (5a-b)

2 equiv. classes of 3 orange formulae (= 6) (5c-d)

2 trivial cases: 2 equiv. classes of 9 red formulae (= 18) (6a-b)
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NOTE: introduce conventions:

1. Boolean combinations have left-to-right Inclusion relation as their left

conjunct and the right-to-left Inclusion relation as their right conjunct

(‘mirror image’). 

2. If both relations have same ‘direction’ then the relation without

equality is the left conjunct.

(4) a. R9 (A d B) w (A e B) 0100 w 0010 = 0110

b. R10 (A ç B) v (A è B) 1011 v 1101 = 1001

(5) a. R11a (A f B) v (A g B) 1100 v 1010 = 1000

R11b (A ç B) v (A f B) 1011 v 1100 = 1000

R11c (A è B) v (A g B) 1101 v 1010 = 1000

=> three equivalent ways of defining Mutual Inclusion

b. R12a (A é B) w (A ê B) 0011 w 0101 = 0111

R12b (A d B) w (A é B) 0100 w 0011 = 0111

R12c (A e B) w (A ê B) 0010 w 0101 = 0111

=> three equivalent ways of defining non-Mutual-Inclusion
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c. R13a (A é B) v (A ê B) 0011 v 0101 = 0001

R13b (A ç B) v (A ê B) 1011 v 0101 = 0001

R13c (A é B) v (A è B) 0011 v 1101 = 0001

=> three equivalent ways of defining Non-Inclusion

d. R14a (A f B) w (A g B) 1100 w 1010 = 1110

R14b (A d B) w (A g B) 0100 w 1010 = 1110

R14c (A f B) w (A e B) 1100 w 0010 = 1110

=> three equivalent ways of defining ‘non-Non-Inclusion’

(6) a. R15 (A d B) v (A e B) 0100 v 0010 = 0000

b. R16 (A ç B) w (A è B) 1011 w 1101 = 1111

Standard examples of De Morgan’s Laws

(7) 0110 - 1001

¬[(A ç B) v (A è B)]  /  (A d B) w (A e B) (R9-R10)

¬[(A d B) w (A e B)]  /  (A ç B) v (A è B)
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1000 - 0001

¬[(A f B) v (A g B)]  /  (A é B) w (A ê B) (R11a-R12a)

¬[(A é B) w (A ê B)]  /  (A f B) v (A g B)

¬[(A ç B) v (A f B)]  /  (A d B) w (A é B) (R11b-R12b)

¬[(A d B) w (A é B)]  /  (A ç B) v (A f B)

¬[(A è B) v (A g B)]  /  (A e B) w (A ê B) (R11c-R12c)

¬[(A e B) w (A ê B)]  /  (A è B) v (A g B)

0001 - 1110

¬[(A é B) v (A ê B)]  /  (A f B) w (A g B) (R13a-R14a)

¬[(A f B) w (A g B)]  /  (A é B) v (A ê B)

¬[(A ç B) v (A ê B)]  /  (A d B) w (A g B) (R13b-R14b)

¬[(A d B) w (A g B)]  /  (A ç B) v (A ê B)

¬[(A é B) v (A è B)]  /  (A f B) w (A e B) (R13c-R14c)

¬[(A f B) w (A e B)]  /  (A é B) v (A è B)

0000 - 1111

¬[(A d B) v (A e B)]  /  (A ç B) w (A è B) (R15-R16)

¬[(A ç B) w (A è B)]  /  (A d B) v (A e B)
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1.4 Set Inclusion in RDH and beyond

at this point one could straightforwardly:

=> “no surprise” : 

8 relations with 4-bit definition => 8 relations are missing

=> Boolean closure

=> describe beta3/ THH or RDH for Aristotelian/Opposition/Implication

geometries for Set Inclusion relations

=> derive Aristotelian Squares and Hexagons of Set Inclusion

=> introduce the Extension from beta3 to beta4 using the 5-partition of

the Gergonne relations instead of a 4-partition
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2 Duality and reversibility in the Set Inclusion Algebra

2.1 Duality in Piaget and Gottschalk

Duality Piaget (1949) Gottschalk (1953) Löbner (1990)

corner Identité (I) Identity (E)

Diagonal Inversion (N) Negational (N) Negation (NEG)

Horizontal Réciprocation (R) Contradual (C) Subnegation (SNEG)

Vertical Corrélation (C) Dual (D) Dual (DUAL)

Piaget (1949) Gottschalk (1953) (2012)

I(abcd) = (abcd)

N(abcd) = (a’b’c’d’) Counterchange = interchange T/F switch

R(abcd) = (dcba) Invert = turn column upside down flip

C(abcd) = (d’c’b’a’) Transpose = invert + counterchange switch + flip

-18-



-19-



criticism of Blanché on the

=> Piaget analysis:

1. terminology “quaterns” C and D are in fact no real squares but

two independent degenerate squares

2. orientation of quaterns is “upside down” from Aristotelian point

of view: In Piaget’s quaterns the arrows go upwards

=> Gottschalk analysis (only quatern A is reversed upside down):

1. quatern A generated on basis of conjunction = L1 (1000) and

quatern B generated on basis of implication = L3 (1011)

2. quatern A junctions : dual/C and negation/N are basic and

subneg/R is derived   (C+N=R)

quatern B implications: subneg/R and negation/N are basic and

dual/C is derived   (R+N=C)

=> is key property of duality, not a problem!!
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2.2 Duality and symmetry

distinguish 1. internal from external symmetry :

2. odd vs even levels of bitstrings L0-L4 ~ number of values 1

symmetry a=d b=c bit strings arity levels

internal symmetry - + 0001 1000 1110 0111

quatern A of junctions

odd L1+L3

external symmetry + - 0100 0010 1011 1101
quatern B of implications

odd L1+L3

full symmetry + + 0000 1111 1001 0110

“quatern C” (R=I)

even L0+L2+L4

no symmetry - - 1010 0101 1100 0011

“quatern D” (R=N)

even L2

=> even levels = full or no symmetry

=> odd levels = external or internal symmetry
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2.3 Duality geometry: squares and crosses
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2.4 Aristotelian geometry: squares and crosses
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2.5 Reversibility geometry: squares

UD = up-down (horizontal mirror) SB = single bar for negation

LR = left-right (vertical mirror) DB = double bar for negation

Type1 reversibility (pred+arg) neg = sneg + dual “simple” dual

Type2 reversibility (pred+prop) dual = sneg + neg “complex” dual

(pace Blanché versus PG)
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=> Quat C en D: same difference between reversibility type 1 type 2!!!

=> Reversibility Geometry (syntactic operations on formulae) is logically

independent from the Duality Geometry (operations on bitstrings):

Duality = 2 squares + 2 crosses

Reversibility = 2 type 1 squares + 2 type 2 squares

=> NEXT STEP: decompose Duality Geometry 

‘horizontal’ mirroring operations => Flip Geometry

‘vertical’ polarity operations => Switch Geometry
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2.6 Flip geometry: squares, bars and loops

IF = internal flip (abcd => acbd) FF = full flip (abcd => dcba)

EF = external flip (abcd => dbca)
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2.7 Switch geometry: squares

IS: internal switch (abcd => ab’c’d) FS: full switch (abcd => a’b’c’d’)

ES: external switch (abcd => a’bcd’)
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2.8 The hybrid nature of the Duality Geometry

=> Switch Geometry <= Duality Geometry => Flip Geometry

     4 squares                  2 squares                   1 square

internal switch full flip internal flip

external switch full switch external flip

full switch full flip

=> Link with information perspective 

~ hybrid nature of Aristotelian Geometry

Switch Geom >? Reversibility Geom >? Duality Geom > Flip Geom 

     4 squares             4/3/2 squares           2 squares         1 square
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2.9 Duality & reversibility with Propositional Connectives

UD = up-down (horizontal mirror) SH = single hook for negation

LR = left-right (vertical mirror) DH = double hook for negation

Type1 reversibility (pred+arg) neg = sneg + dual “simple” dual

Type2 reversibility (pred+prop) dual = sneg + neg “complex” dual

Type3 reversibility (arg+prop) dual = sneg + neg “complex” dual
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3 Duality squares and crosses from 2D to 3D

3.1 Duality vs Aristotelian relations in square/hexagon
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3.2 Aristotelian relations in RDH

“6 pairwise interlocking stars”
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3.3 Duality relations in 2D: Piaget

Piaget (1952:147) 2D logical geometry:mirror-operations in 4x4 table

Inverse (N) of an element X is its symmetric element w.r.t. the

center of the square/table

-34-



Réciproque (R) is symmetric element w.r.t. “decreasing” diagonal

Corrélative (C) is symmetric element w.r.t. the “increasing” diagonal
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3.4 Duality relations in 3D: RDH
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4 Conclusion and prospects

=> Algebra of Set-Inclusion as â3/TTH/RDH

=> Distinguish duality squares from duality crosses

=> Decompose Duality geometry in two steps:

1. distinction between

syntax: operations on formulae => Reversibility Geometry

semantics: operations on bitstrings

2. within operations on bitstrings distinction between

‘horizontal’ mirroring operations => Flip Geometry

‘vertical’ polarity operations => Switch Geometry

=> Switch Geometry <= Duality Geometry => Flip Geometry

     4 squares                  2 squares                   1 square

Switch Geom >? Reversibility Geom >? Duality Geom > Flip Geom 

     4 squares             4/3/2 squares           2 squares         1 square
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downgrade analysis of duality from 3D/4-bit in RDH

to 2D/3-bit in hexagon 

quaterns external symmetry

- +

internal

symmetry

- 1010 0101 1100 0011

“quatern D” (R=N)
0100 0010 1011 1101

quatern B of implications

+ 0001 1000 1110 0111

quatern A of junctions
0000 1111 1001 0110

“quatern C” (R=I)

quaterns external symmetry

- +

internal

symmetry

-

+ 001 100 110 011

duality square
000 111 101 010

duality cross (R=I)
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