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Introduction: Logical Geometry 2

The central aim of Logical Geometry is

to develop an interdisciplinary framework

for the study of geometrical representations

in the analysis of logical relations.

More in particular:

we analyse the logical relations of opposition, implication and duality
between expressions in various logical, linguistic and conceptual systems.

we study abstract geometrical representations of these relations as
well as their visualisation by means of 2D and 3D diagrams.

we develop an interdisciplinary framework integrating insights from
logic, formal semantics, algebra, group theory, lattice theory, computer
graphics, cognitive psychology, information visualisation and diagrams
design.
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Introduction: Bitstrings in Logical Geometry 3

Bitstrings

are an extremely powerful tool

yield both quantitative and qualitative results

raise interesting new questions

Main aims of the talk:

provide a uni�ed account of bitstrings in logical geometry

illustrate their e�ectiveness on di�erent levels
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Bitstrings 6

Bitstrings are sequences of bits (0/1) that encode (denotations of) formulas
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Bitstrings 7

Bitstrings have been used to encode

logical systems: e.g. classical propositional logic, �rst-order logic,
modal logic and public announcement logic

lexical �elds: e.g. comparative quanti�cation, subjective quanti�cation,
color terms and set inclusion relations

Remark:

we use bitstrings to encode formulas, not relations between formulas

if a formula ϕ is encoded by the bitstring b, we write β(ϕ) = b
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Aristotelian relations between bitstrings 8

Relative to a Boolean logical system S, two formulas ϕ,ψ are
contradictory i� S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
contrary i� S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ)
subcontrary i� S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
in subalternation i� S |= ϕ→ ψ and S 6|= ψ → ϕ

In terms of bitstrings, two bitstrings b1 and b2 are
contradictory i� b1 ∧ b2 = 0000 and b1 ∨ b2 = 1111
contrary i� b1 ∧ b2 = 0000 and b1 ∨ b2 6= 1111
subcontrary i� b1 ∧ b2 6= 0000 and b1 ∨ b2 = 1111
in subalternation i� b1 ∧ b2 = b1 and b1 ∨ b2 6= b1

ϕ and ψ stand in some Aristotelian relation (de�ned for S) i�
β(ϕ) and β(ψ) stand in that same relation (de�ned for bitstrings).

β maps formulas from S to bitstrings, preserving Aristotelian structure
(Representation Theorem for �nite Boolean algebras)
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Bitstrings and Semantics 9

In most cases, the mapping β assigns a semantics to the formulas
(>< Pellissier's setting approach).

Each bit provides an answer to a (binary) meaningful question
(analysis of generalized quanti�ers as sets of sets).

In S5 the bit positions encode answers to the following questions:

Is ϕ true if
p is true in all possible worlds? yes/no
p is true in the actual world but not in all possible worlds? yes/no
p is true in some possible worlds but not in the actual world? yes/no
p is true in no possible worlds? yes/no

Examples:
β(♦p) = 1110 = 〈 yes, yes, yes, no 〉
β(♦p ∧ ♦¬p) = 0110 = 〈 no, yes, yes, no 〉
β(♦¬p) = 0111 = 〈 no, yes, yes, yes 〉
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Logical E�ectiveness: Unconnectedness 11

the set of 4 Aristotelian relations is hybrid between two other sets of
logical relations that are ordered by information level

Opposition relations:
contradiction, contrariety, subcontrariety, and non-contradiction

Implication relations:
bi-implication, left-implication, right-implication, and non-implication
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Logical E�ectiveness: Unconnectedness 12

Unconnectedness (logical independence):

absence of any Aristotelian relation

combination of least informative Opposition and Implication relations

Uni�cation: Unconnectedness requires bitstrings of length at least 4

Theorem: ϕ and ψ unconnected ⇒ β(ϕ) and β(ψ) have ≥ 4 bits
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Logical E�ectiveness: Calculating (sub)contraries 13

For any bitstring of length n and level i we can use simple combinatorial
arguments to calculate the number of

contradictories #CD = 1
contraries #C = 2n−i − 1
subcontraries #SC = 2i − 1
non-contradictories #NCD = (2n−i − 1)(2i − 1)

Note that #CD < #C,#SC < #NCD i� 1 < i < n− 1

Recall informativity ordering: CD > C,SC > NCD

Note that if i ≈ n
2 , then #C ≈ #SC

Bitstrings in middle levels have similar numbers of contraries and
subcontraries; recall informativity ordering: C ≡ SC
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Diagrammatic E�ectiveness: exhaustive typology of RDH 15

Boolean closure of bitstrings length 4
2009
=⇒ rhombic dodecahedron (RDH)

internal structure of RDH
2013
=⇒

exhaustive typology of Aristotelian diagrams for length 4 bitstrings
CO perspective: cube (L1-L3) + octahedron (L2-L2)

Use bitstrings to study embeddings
rhombic dodecahedron ∼ bitstrings of length 4
strong JSB hexagon ∼ bitstrings of length 3

compression of bitstrings: length 4  length 3
e.g. b1 = b2: 1100  100, 0010  010, 0011  011

6 strong JSB hexagons in RDH ∼ 6 compressions length 4  length 3

b2 = b3, b1 = b2, b3 = b4, b1 = b4, b1 = b3, b2 = b4
(1950s) (2003) (2003) (2005*) (2005) (2005)
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Diagrammatic E�ectiveness: typology of Hexagons 16

How many hexagons can be constructed with bitstrings of length `?

2` bitstrings of length `  (2` − 2) contingent bitstrings of length `

bitstrings are chosen in contradictory pairs: (2`−2)(2`−4)(2`−6)
48

` = 3 ` = 4 ` = 5 ` = 6 ` = 7
(6)(4)(2)

48
(14)(12)(10)

48
(30)(28)(26)

48
(62)(60)(58)

48
(126)(124)(122)

48

1 35 455 4495 39711

computational importance of bitstrings for generating hexagons.

Di�erent types of hexagons require bitstrings of di�erent length:

strong Jacoby-Sesmat-Blanché (JSB) requires length 3

weak JSB, Sherwood-Czezowski, U4 and U12 require length 4

U8 requires length 5

no hexagons require length 6, 7 ...
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Linguistic and Cognitive E�ectiveness: Scales 18

Bitstrings generate new questions about

the linguistic/cognitive aspects of the expressions they encode
the relative weight/strength of individual bit positions inside bitstrings
the underlying scalar/linear structure of the conceptual domain

Edges versus center in bitstrings of length 3

Bitstrings of length 4 as re�nements/expansions of bitstrings of length 3
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Linguistic and Cognitive E�ectiveness: (Non-)Linearity 19

From mathematical/algebraic perspective no di�erence (so far) between

`linear' bitstrings (such as 1010)
`non-linear' bitstrings (such as 1010)

From linguistic/cognitive perspective di�erence is relevant :

Linear bitstrings imply that all questions (all bits) about a lexical �eld can
be situated on a single dimension
 comparative quanti�cation, proportional quanti�cation, propositional
connectives, all/many2/few2/no
Non-linear bitstrings imply that the various questions belong to
fundamentally distinct dimensions
 modality in S5, all/John/not-John/no, all/many1/few1/no
Formulate empirical hypotheses concerning the cognitive complexity
(e.g. processing times) of these lexical �elds.
 future research
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Conclusion 21

Aristotelian relations between bitstrings in Logical Geometry

Logical E�ectiveness

Unconnectedness (non-contradiction + non-implication) length ≥ 4
Counting (sub)contraries: #CD < #C,#SC < #NCD

Diagrammatic E�ectiveness

6 strong JSB hexagons in RDH ∼ 6 compressions length 4  length 3

length 3 length 4 length 5
strong JSB weak JSB, Sherwood-Czezowski Unconnected8

Unconnected4, Unconnected12

Linguistic/Cognitive E�ectiveness

scales length 4 as re�nement of length 3
`linear bitstrings ∼ 1 dimension' vs `non-linear bitstrings ∼ 6= dimensions'
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The End 22

Thank you!

More info: www.logicalgeometry.org
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