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Introduction: Logical Geometry 2

The central aim of Logical Geometry is
@ to develop an interdisciplinary framework
o for the study of geometrical representations

@ in the analysis of logical relations.

More in particular:

@ we analyse the logical relations of opposition, implication and duality
between expressions in various logical, linguistic and conceptual systems.

@ we study abstract geometrical representations of these relations as
well as their visualisation by means of 2D and 3D diagrams.

e we develop an interdisciplinary framework integrating insights from
logic, formal semantics, algebra, group theory, lattice theory, computer
graphics, cognitive psychology, information visualisation and diagrams
design.
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Introduction: Bitstrings in Logical Geometry 3

Bitstrings
@ are an extremely powerful tool
o yield both quantitative and qualitative results

@ raise interesting new questions

Main aims of the talk:
@ provide a unified account of bitstrings in logical geometry

@ illustrate their effectiveness on different levels
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Structure of the talk 4

@ Introduction

© Bitstrings in Logical Geometry

© Logical Effectiveness

@ Diagrammatic Effectiveness

© Linguistic and Cognitive Effectiveness
@ Conclusion
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Structure of the talk 5

© Bitstrings in Logical Geometry
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Bitstrings

Bitstrings are sequences of bits (0/1) that encode (denotations of) formulas

Modal Logic Propositional | bitstrings | bitstrings | Propositional Modal Logic
S5 Logic level 1 level 3 Logic S5
Op phg 1000 0111 “(pAq) —{p
pAp —(p-q) 0100 1011 P-q Opv—p
Oph—p ~“(p-q) 0010 1101 pP-q —GpVp
—0p —(pVq) 0001 1110 pVa Sp
Modal Logic Propositional | bitstrings | bitstrings | Propositional Modal Logic
S5 Logic level 2/0 | level 2/4 Logic S5
P P 1100 0011 —p P
OpV ($ph—p) q 1010 0101 —q —opV (OpAp)
OpV —$p peq 1001 0110 —(p=q) —pAop
OpA—Lp php | | | v OpV—Cp
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Bitstrings 7

Bitstrings have been used to encode

o logical systems: e.g. classical propositional logic, first-order logic,
modal logic and public announcement logic

o lexical fields: e.g. comparative quantification, subjective quantification,
color terms and set inclusion relations

Remark:
@ we use bitstrings to encode formulas, not relations between formulas

e if a formula ¢ is encoded by the bitstring b, we write S(¢) = b
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Aristotelian relations between bitstrings

Relative to a Boolean logical system S, two formulas ¢, ¢ are

contradictory iff
contrary iff
subcontrary iff

in subalternation iff

SE-(pAy)
SE (e AY)
SFE-(pA)
SEe—=9

and S E —(—p A7)
and S P& (=p A=)
and S = (—p A )
and SHEY—p

In terms of bitstrings, two bitstrings b, and by are

contradictory iff
contrary iff
subcontrary iff

in subalternation iff

by A by = 0000
b1 A by = 0000
by A by £ 0000
b1 ANby = by

and by Vby =1111
and by V by £ 1111
and b1 \ bg =1111
and b1 \ b2 # bl

@ ¢ and 1 stand in some Aristotelian relation (defined for S) iff
B(p) and (1)) stand in that same relation (defined for bitstrings).

@ 3 maps formulas from S to bitstrings, preserving Aristotelian structure
(Representation Theorem for finite Boolean algebras)
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Bitstrings and Semantics 9

@ In most cases, the mapping [ assigns a semantics to the formulas
(>< Pellissier’s setting approach).

@ Each bit provides an answer to a (binary) meaningful question
(analysis of generalized quantifiers as sets of sets).

@ In S5 the bit positions encode answers to the following questions:

Is o true if
p is true in all possible worlds? yes/no
p is true in the actual world but not in all possible worlds? yes/no
p is true in some possible worlds but not in the actual world?  yes/no
p is true in no possible worlds? yes/no
B(Op) = 1110 = ( yes, yes, yes, no )
@ Examples: B(Op A O—p) = 0110 = ( no, yes, yes, no )

B(O—p) = 0111 ( no, yes, yes, yes )
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Structure of the talk 10

© Logical Effectiveness
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Logical Effectiveness: Unconnectedness 11

o the set of 4 Aristotelian relations is hybrid between two other sets of
logical relations that are ordered by information level

@ Opposition relations:
contradiction, contrariety, subcontrariety, and non-contradiction

o Implication relations:
bi-implication, left-implication, right-implication, and non-implication

contradiction

contra- subcontra- left-
riety riety impl.

right-
impl.

non-contradiction non-impl.
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Logical Effectiveness: Unconnectedness 12

Unconnectedness (logical independence):
@ absence of any Aristotelian relation
@ combination of least informative Opposition and Implication relations

contradiction bi-impl.

contra- subcontra- left- right-
riety riety impl. impl.

[ non-contradiction non-impl. ]

@ Unification: Unconnectedness requires bitstrings of length at least 4
@ Theorem: ¢ and 1) unconnected = [(p) and [(¢)) have > 4 bits
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Logical Effectiveness: Calculating (sub)contraries 13

For any bitstring of length n and level i we can use simple combinatorial
arguments to calculate the number of

contradictories #CD =1
contraries #CO =2n i1
subcontraries #SC =2 -1

non-contradictories #NCD = (277" —1)(2° — 1)

@ Note that #CD < #C, #SC < #NCD iff 1 <i<n—1

@ Recall informativity ordering: CD > C,SC > NCD

o Note that if i = §, then #C ~ #SC

@ Bitstrings in middle levels have similar numbers of contraries and

subcontraries; recall informativity ordering: C' = SC
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Structure of the talk 14

@ Diagrammatic Effectiveness
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Diagrammatic Effectiveness: exhaustive typology of RDH 15

@ Boolean closure of bitstrings length 4 29% thombic dodecahedron (RDH)

} 2013
@ internal structure of RDH =

o exhaustive typology of Aristotelian diagrams for length 4 bitstrings
o CO perspective: cube (L1-L3) + octahedron (L2-L2)

@ Use bitstrings to study embeddings

rhombic dodecahedron  ~  bitstrings of length 4
strong JSB hexagon ~  bitstrings of length 3

e compression of bitstrings: length 4 ~~ length 3
e.g. by = by: 1100 ~~ 100, 0010 ~~ 010, 0011 ~~ 011

6 strong JSB hexagons in RDH ~ 6 compressions length 4 ~+ length 3

by =03, by =0by, b3=10by, by =0by, by =03, by=20by
(1950s)  (2003)  (2003) (2005%)  (2005)  (2005)
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Diagrammatic Effectiveness: typology of Hexagons 16

How many hexagons can be constructed with bitstrings of length ¢7

o 20 bitstrings of length ¢ ~ (2¢ — 2) contingent bitstrings of length ¢

l_ 0 _ l_
@ bitstrings are chosen in contradictory pairs: (222 -2 -6)

48
¢=3 =4 =5 =6 C=17
(6)(4)(2) (14)(12)(10)  (30)(28)(26)  (62)(60)(58)  (126)(124)(122)
) 48 48 48 48 48
1 35 455 4495 39711

@ computational importance of bitstrings for generating hexagons.

Different types of hexagons require bitstrings of different length:
@ strong Jacoby-Sesmat-Blanché (JSB) requires length 3
o weak JSB, Sherwood-Czezowski, U4 and U12 require length 4
@ U8 requires length 5

@ no hexagons require length 6, 7 ...
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Structure of the talk 17

© Linguistic and Cognitive Effectiveness
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Linguistic and Cogpnitive Effectiveness: Scales 18

@ Bitstrings generate new questions about
o the linguistic/cognitive aspects of the expressions they encode
o the relative weight/strength of individual bit positions inside bitstrings
o the underlying scalar/linear structure of the conceptual domain

o Edges versus center in bitstrings of length 3

Cp
®

1/0

—Op all

1/0 1/0

no <

‘ vs

1/0 1/0

= >
®

1/0

1/0

1/0

1/0

@ Bitstrings of length 4 as refinements/expansions of bitstrings of length 3

p ‘ —=0p all no
ol —Iie o —J0 ||z
— q q q q
P P many | few

1/0 1/0 1/o 110

1/0 | 1/0 1/0 | 1/0 1/0 /o 1/0 1/0
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Linguistic and Cognitive Effectiveness: (Non-)Linearity 19

e From mathematical/algebraic perspective no difference (so far) between

o ‘linear’ bitstrings (such as 1010)
e ‘non-linear’ bitstrings (such as 190)

e From linguistic/cognitive perspective difference is relevant :

e Linear bitstrings imply that all questions (all bits) about a lexical field can
be situated on a single dimension
~» comparative quantification, proportional quantification, propositional
connectives, all/manys /fews /no

o Non-linear bitstrings imply that the various questions belong to
fundamentally distinct dimensions
~» modality in S5, all/John/not-John/no, all/many, /few, /no

e Formulate empirical hypotheses concerning the cognitive complexity
(e.g. processing times) of these lexical fields.
~ future research
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Structure of the talk 20

@ Conclusion
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Conclusion 21

Aristotelian relations between bitstrings in Logical Geometry

Logical Effectiveness

o Unconnectedness (non-contradiction + non-implication) length > 4
o Counting (sub)contraries: #CD < #C,#SC < #NCD

Diagrammatic Effectiveness
e 6 strong JSB hexagons in RDH ~ 6 compressions length 4 ~~ length 3
length 3 ‘ length 4 ‘ length 5

e strong JSB | weak JSB, Sherwood-Czezowski | Unconnected8
Unconnected4, Unconnected12

Linguistic/Cognitive Effectiveness

e scales length 4 as refinement of length 3
o ‘linear bitstrings ~ 1 dimension’ vs ‘non-linear bitstrings ~ # dimensions’
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The End 22

Thank you!

More info: www.logicalgeometry.org

KU LEUVEN

Bitstrings in Logical Geometry — H. Smessaert & L. Demey



	Introduction
	Bitstrings in Logical Geometry
	Logical Effectiveness
	Diagrammatic Effectiveness
	Linguistic and Cognitive Effectiveness
	Conclusion

