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Abstract. This paper concerns the Aristotelian relations of contradic-
tion, contrariety, subcontrariety and subalternation between 14 contin-
gent formulae, which can get a 2D or 3D visual representation by means
of Aristotelian diagrams. The overall 3D diagram representing these Aris-
totelian relations is the rhombic dodecahedron (RDH), a polyhedron con-
sisting of 14 vertices and 12 rhombic faces (Section 2). The ultimate aim
is to study the various complementarities between Aristotelian diagrams
inside the RDH. The crucial notions are therefore those of subdiagram
and of nesting or embedding smaller diagrams into bigger ones. Three
types of Aristotelian squares are characterised in terms of which types
of contradictory diagonals they contain (Section 3). Secondly, any Aris-
totelian hexagon contains 3 squares (Section 4), and any Aristotelian
octagon contains 4 hexagons (Section 5), so that different types of big-
ger diagrams can be distinguished in terms of which types of subdiagrams
they contain. In a final part, the logical complementarities between 6 and
8 formulae are related to the geometrical complementarities between the
3D embeddings of hexagons and octagons inside the RDH (Section 6).

Keywords: Aristotelian relations, square of oppositions, hexagon of op-
positions, logical geometry, 3D visualisation, subdiagrams, complemen-
tarity, embedding

1 Introduction

Aims of the paper. In addition to using diagrams for the visual representation
of individual formulae or propositions, logicians also use diagrams to visualize
certain relations between formulae from some given logical system. For exam-
ple, the relations of contradiction, contrariety, subcontrariety and subalternation
which hold between a set of logical formulae, are standardly visualised by means
of Aristotelian diagrams, such as the well-known square of oppositions. The lat-
ter has a rich tradition, originating in Aristotle’s work on syllogistics, but it is
also widely used by contemporary logicians to visualize interesting fragments of
systems such as modal logic, (dynamic) epistemic logic and deontic logic. Fur-
thermore, other Aristotelian diagrams beyond the traditional square have been



studied in detail, the most widely known probably being the hexagon described
by Jacoby, Sesmat and Blanché [1–3]. In recent years, several three-dimensional
Aristotelian diagrams have been proposed, such as the octahedron, cube or tetra-
hexahedron. One such 3D representation, namely the rhombic dodecahedron [4–
6], henceforth referred to as RDH, visualises the Aristotelian relations between 14
contingent formulae and serves as the general frame of reference for the present
paper. Our central aim is twofold, namely (i) to develop strategies for system-
atically charting the internal structure of the RDH and (ii) to study various
complementarities between Aristotelian diagrams inside the RDH. In doing so,
we provide a more unified account of a whole range of diagrams which have so
far mostly been treated independently of one another in the literature.

The embedding of subdiagrams. The description of the internal structure
of the RDH, and more in particular of the various types of complementarities,
crucially relies on the idea that smaller diagrams occur inside bigger diagrams.
These notions of subdiagram or diagram embedding/nesting have been studied
for other types of diagrams as well, more in particular Euler diagrams [7], Venn
diagrams [8], spider diagrams [9] or algebra diagrams [10]. The analysis proposed
in the present paper is very much in line with the visual grammar or visual syn-
tax approach developed by Engelhardt [11, p. 104] in that “various syntactic
principles can be identified in graphics of different types, and the nature of vi-
sual representation allows for visual nesting and recursion [...] any object may
contain a set of (sub-)objects within the space that it occupies. When this prin-
ciple is repeated recursively, the spatial arrangement of (sub-)objects is, at each
level, determined by the specific nature of the containing space at that level”.
Furthermore, the central role of the RDH as the overall Aristotelian diagram
in this paper resembles that of the so-called ‘top state’ in work on the syntax
and semantics of UML statecharts [12, pp. 327–328] which describes “the set of
transitively nested substates of a composite state” and assumes that “in every
statechart there is an inherent composite state called the top state which covers
all the (pseudo) states and is the container of the states”.

The structure of the paper. In Section 2 we first introduce the Aristotelian
relations and the partitioning of logical formulae into ‘pairs of contradictories’
(PCDs). We then present the rhombic dodecahedron for the 3D visualisation of
Aristotelian relations between 14 formulae. In the central part of the paper, i.e.
Sections 3, 4 and 5, different types of (bigger) diagrams are distinguished on
the basis of which types of subdiagrams they contain. In Section 3, three types
of Aristotelian squares are characterised in terms of which types of PCDs they
contain. In a next step, Section 4 defines different types of hexagons depending on
which types of squares are embedded in them. Similarly, the distinction between
the two sorts of octagons in Section 5 is based on differences in the nested
hexagons. Section 6 then moves from the level of 2D visual representations to
that of 3D visualisation: the different ways in which the 14 formulae can be
partitioned into a hexagon (6 formulae) and an octagon (8 formulae) are related
to the geometrical complementarities between the 3D embeddings of hexagons
and octagons inside the RDH.



2 Aristotelian relations in the rhombic dodecahedron

Aristotelian relations. The traditional Aristotelian relations are defined as
follows:

ϕ and ψ are contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
ϕ and ψ are contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ),
ϕ and ψ are subcontrary iff S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
ϕ and ψ are in subalternation iff S |= ϕ→ ψ and S 6|= ψ → ϕ.

Informally, two formulae are contradictory when they cannot be true together
and cannot be false together. They are contrary when they cannot be true
together but may be false together and subcontrary when they cannot be false
together but may be true together. Finally, notice that subalternation is not
defined in terms of the formulae being true together or being false together, but
in terms of truth propagation: there is a subalternation from ϕ to ψ when ϕ
entails ψ but not vice versa.

Pairs of Contradictories. The 16 formulae (up to logical equivalence) from
Classical Propositional Logic which can be built by means of unary or binary
connectives and two propositional variables p and q, can be partitioned into the
following 8 pairs of contradictories (PCDs), namely 4 PCDs of type C and
4 PCDs of type O:1

PCDs of type C: a. (p ∧ q) b. ¬(p→ q) c. ¬(p← q) d. ¬(p ∨ q)
a’. ¬(p ∧ q) b’. (p→ q) c’. (p← q) d’. (p ∨ q)

PCDs of type O: e. p f. q g. (p↔ q) h. p ∧ ¬p
e’. ¬p f’. ¬q g’. ¬(p↔ q) h’. p ∨ ¬p

Furthermore, any two formulae taken from the top row (a-d) in the PCDs
of type C are contrary to one another, whereas any two formulae taken from
the bottom row (a’-d’) are subcontrary to one another. Notice that we will
henceforth disregard the PCD containing the two non-contingent formulae in
(h-h’), and focus on the 7 PCDs containing the 14 contingent formulae in (a-a’)
to (g-g’).

The rhombic dodecahedron. Various isomorphic 3D visualisations have been
proposed for the logical relations between the 14 contingent formulae above. Both
the tetra-hexahedral representation of Sauriol [13] and the tetra-icosahedral rep-
resentation of Moretti [14] take as their starting point the cube to which six
pyramids are added, one on each face of the cube2. Sauriol makes use of ‘obtuse’
pyramids (whose angle between the base and each of the triangular faces is less
than 45◦), thus obtaining the convex polyhedron in Figure 1a. Moretti, on the
other hand, makes use of ‘acute’ pyramids (whose angle between the base and

1 The rationale behind these abbreviations is explained in the next subsection.
2 A radically different 3D representation, although fundamentally still isomorphic to

the ones in Figure 1, is the ‘double’ tetrahedron of Dubois and Prade [15].



Fig. 1. (a) Sauriol’s tetrahexahedron (b) the RDH (c) Moretti’s tetraicosahedron

each of the triangular faces is greater than 45◦), thus obtaining the concave poly-
hedron in Figure 1c. The result in both cases is a polyhedron consisting of 24
triangular faces and 14 vertices (corresponding to the 14 formulae), namely the
8 vertices of the cube and the six pyramids’ apices. The polyhedron proposed in
Smessaert [5, 6] and adopted in Demey [4], by contrast, is the rhombic dodec-
ahedron (RDH) in Figure 1b. It can be considered as lying exactly in between
the Sauriol structure in Figure 1a and the Moretti structure in Figure 1c, in
the sense that the six pyramids added onto the faces of the cube are ‘right’ (i.e.
having an angle between their base and each of their triangular faces of exactly
45◦). As a consequence, each pair of triangular faces of adjacent pyramids falls
in the same plane and constitutes a single rhombic face; an RDH thus consists
of 14 vertices, but has 12 rhombic faces instead of 24 triangular faces.

Since the RDH is the polyhedral dual of the cuboctahedron (an Archimedean
solid combining the properties of a cube and an octahedron [16]), it inherits this
double connection, both with the cube and the octahedron. In particular the
latter connection is absent from the Sauriol and Moretti structures, and can be
seen as the major advantage of the RDH.

The crucial property of the visualisation in Figure 2 is that the Aristotelian
relation of contradiction corresponds to central symmetry. In other words, each
PCD corresponds to a diagonal through the center of the RDH. Two sets of
diagonals can be distinguished: first of all, each formula from the contrariety
set in (a-d), with a black label in Figure 2, constitutes a PCD diagonal with a
formula from the subcontrary set in (a’-d’), with a grey label. In other words,
the 8 vertices with the black and grey labels constitute the cube inside the RDH,
and its diagonals represent the 4 PCDs of type C. Secondly, each of the three
formulae in (e-g) constitutes a PCD diagonal with its negative counterpart in
(e’-g’). Hence, the 6 vertices with a white label constitute the octahedron inside
the RDH, the diagonals of which represent the 3 (contingent) PCDs of type O.

Notice that a similar rhombic dodecahedron is used in the visualisation of
Zellweger [17]. In comparison to the Aristotelian RDH in Figure 2, however,
Zellweger puts the two contingent formulae in (g-g’) in the center of his RDH



Fig. 2. The 3D visualisation of propositional connectives in the RDH

and the two non-contingent formulae in (h-h’) at its top and bottom vertices3.
Furthermore, in the Zellweger RDH, all 4 contrary formulae with the black label
fall in one plane, all 4 subcontrary formulae with the grey label fall in one
plane, and so do all 6 of the white label formulae. We argue elsewhere [18]
that, although the Zellweger representation reflects the layered structure of the
underlying Hasse diagram more directly, it is less suited for representing the
Aristotelian relations.

3 Aristotelian Squares of Opposition

Three types of Aristotelian squares are distinguished in Figure 3. First of all,
there are the classical squares in Figure 3a-b which have the diagonals for con-
tradiction, the arrows going down for subalternation, the dashed line at the top
connecting the contraries and the dotted line at the bottom connecting the sub-
contraries. There is a crucial difference between these squares in terms of which
types of PCDs are involved. The balanced classical square in Figure 3a consists
of two PCDs that are of the same type, i.e. of type C. The unbalanced classical
square in Figure 3b, by contrast, consists of one PCD of type C (the diagonal

3 Although the non-contingent formulae in (h-h’) are not explicitly represented in our
RDH, they can be taken to coincide in its center.



Fig. 3. Aristotelian Squares of Oppositions: (a) balanced classical (b) unbalanced clas-
sical (c) degenerate

Fig. 4. Aristotelian Hexagons of Oppositions: (a) Jacoby-Sesmat-Blanché = JSB (b)
Sherwood-Czezowski = SC (c) Unconnected-4 = U4

from top left to bottom right) and one PCD of type O (the diagonal from bottom
left to top right). The third square, in Figure 3c, is degenerate in terms of the
Aristotelian relations holding between the 4 formulae. Only the diagonals for
contradiction remain, whereas the 4 outer edges of the square do not represent
any Aristotelian relation whatsoever: the 4 formulae are pairwise ‘unconnected’,
i.e. logically independent [19]. Furthermore, the resulting configuration turns out
to be balanced again: it consists of two PCDs of the O type4.

4 Aristotelian Hexagons of Opposition

In this section, we first distinguish three types of Aristotelian hexagons in terms
of which types of PCDs they consist of, namely the Jacoby-Sesmat-Blanché
hexagon (JSB hexagon for short), the Sherwood-Czezowski hexagon (SC hexagon)
and the Unconnected-4 hexagon (U4 hexagon). Secondly, each of these 3 types of
hexagons is further characterized in terms of which types of squares it contains.

Three types of Aristotelian hexagons. The first two hexagons in Figure 4a-b
illustrate the two by now standard ways in which a classical Aristotelian square
can be extended or generalized to a hexagon [6]. The starting point in both cases

4 Another balanced degenerate square can be constructed using the four single-variable
formulas p, ¬p, q and ¬q (this square is embedded inside the Buridan octagon shown
in Figure 8b). Next to these balanced degenerate squares, there also exist unbalanced
degenerate squares. However, the latter play no role in the present paper.



Fig. 5. The Aristotelian squares in the Jacoby-Sesmat-Blanché hexagon JSB

Fig. 6. The Aristotelian squares in the Sherwood-Czezowski hexagon SC

is the balanced classical square of Figure 3a in the grey shaded area, consisting of
two PCD diagonals of type C. Furthermore, in both cases the third PCD which
is added is of type O. In the JSB hexagon of Jacoby [1], Sesmat [2] and Blanché
[3] in Figure 4a the additional PCD consists of the disjunction of the square’s
upper two vertices and the conjunction of its lower two vertices, and is therefore
added to the square ‘vertically’. By contrast, in the SC hexagon of Sherwood [20,
21] and Czezowski [22] in Figure 4b, the additional PCD consists of two formulae
that are intermediate with respect to subalternation between the square’s left
two and right two vertices, and is therefore added to the square ‘horizontally’.
These different ways of inserting the third diagonal into the square result in two
fundamentally distinct hexagonal constellations of Aristotelian relations. In the
JSB hexagon in Figure 4a, the relations of contrariety and subcontrariety yield
two triangles interlocking into a star-like shape inside the hexagon, whereas the
arrows of subalternation constitute the outer edges of the hexagon and point
from each vertex on the triangle of contraries to the two adjecent ones on the
triangle of subcontraries. In the SC hexagon in Figure 4b, by contrast, the arrows
of subalternation, which are all pointing downwards, constitute two triangles (of
transitivity), whereas the contraries and subcontraries yield two n shapes instead
of two triangles. With the third hexagon in Figure 4c, the starting point is also
a balanced square in grey, but this time it is the degenerate square of Figure 3c,
consisting of two PCD diagonals of type O. Adding a PCD of type C as the
third diagonal in vertical position yields yet another Aristotelian configuration.
Because of the presence of the 4 unconnectedness relations in the central square,
this hexagon will be referred to as the Unconnected-4 or U4 hexagon5. In contrast

5 At least two more types of hexagons can be defined: (i) the so-called ‘weak’ JSB
hexagon in Moretti [14] and Pellissier [23] consists of 3 PCDs of type C but is



Fig. 7. The Aristotelian squares in the Unconnected-4 hexagon U4

to the JSB and SC hexagons in Figures 4a-b, U4 only contains 4 subalternation
arrows instead of 6, and has V-shaped (instead of triangular) constellations for
its contraries and subcontraries.

Squares inside the Aristotelian hexagons. We have just distinguished three
types of Aristotelian hexagons in terms of which types of PCD diagonals they
consist of. A second, closely related strategy for establishing a typology of
hexagons is that of considering (i) which types of subdiagrams are embedded
inside the bigger hexagonal diagram and (ii) in which way they are embedded.
More in particular: any hexagon can be shown to contain 3 squares: since a
hexagon consists of three diagonals, each of them can be left out in turn to yield
a distinct square (consisting of 2 out of the 3 original diagonals). Looking at
the overall constellations in Figures 5 to 7, we observe that all three types of
hexagons contain one balanced square in the (a) diagram and two unbalanced
classical squares in the (b-c) diagrams. A first difference, of course, is that with
the JSB hexagon in Figure 5a and the SC-hexagon in Figure 6a the balanced
square is the classical one, whereas with the U4 hexagon in Figure 7a it is the
degenerate one. Secondly, although the JSB hexagon and the SC hexagon resem-
ble one another as to which types of squares are embedded, they crucially differ
as to the way in which the two unbalanced classical squares are embedded. In
Figure 5b-c the embedding involves a rotation of 120◦ clockwise or counterclock-
wise (because of the triangular shape of the (sub)contraries), whereas in Figure
6b-c the embedding involves a rotation of only 30◦ (because of the n shape of
the (sub)contraries). In Smessaert [6] this difference is argued to be due to the
fact that the JSB hexagon is closed under the Boolean operations, whereas the
SC hexagon is not. In the former case, the hexagon contains the meet and join
of any of its pairs of formulae: each vertex on the triangle of contraries is the
conjunction or meet of its two neighbours on the triangle of subcontraries, and
vice versa, each vertex on the triangle of subcontraries is the disjunction or join
of its two neighbours on the triangle of contraries. In the latter case, however,
quite a number of pairs of vertices have a meet or join which does not belong to
the hexagon (although their negation is always there due to the PCDs). Notice,

isomorphic to the JSB hexagon in Figure 4a, (ii) the so-called Unconnected-12 or
U12 hexagon consists of 3 PCDs of type O and, apart from the three diagonals of
contradiction, exclusively contains 12 relations of unconnectedness.



Fig. 8. Aristotelian octagons: (a) Béziau (b) Buridan

by the way, that the U4 hexagon resembles the SC hexagon in not being closed
under the Boolean operations either.

5 Aristotelian Octagons of Opposition

In this section two well-known types of Aristotelian octagons will be distin-
guished, namely the Béziau octagon [24] and the Buridan octagon [25, 26]. They
will be shown to differ from one another in terms of the types of hexagons that
can be embedded into them as subdiagrams.

The Béziau octagon versus the Buridan octagon. If we adopt the original
strategy for distinguishing diagrams, namely on the basis of the types of PCDs
they consist of, the two octagons in Figure 8 turn out to be of the same type,
since they both contain 2 PCDs of type C as well as 2 PCDs of type O. As a
consequence, they can both be seen as combinations of one classical square (with
the type C PCDs) in the lighter shade of grey and a degenerate square (with the
type O PCDs) in the darker shade of grey. The crucial difference between the
two octagons thus concerns the way in which these two squares are embedded
into them. With the Béziau octagon in Figure 8a, the vertices of the two squares
are strictly alternating on the outer edge, whereas with the Buridan octagon
in Figure 8b, they are pairwise alternating. This results in two fundamentally
distinct constellations of Aristotelian relations. If we focus on the ‘triangular’
components, the Béziau octagon on the left has two triangles of subalternation as
well as an interlocking pair of triangles for contraries and subcontraries. Although
the Buridan octagon on the right also contains 4 triangular shapes, they are all
of the same type, namely two pairs of subalternation triangles.

Hexagons inside the Aristotelian octagons. So far, the two types of oc-
tagons were distinguished in terms of (i) different ways of interlocking the clas-
sical and the degenerate squares and (ii) different sets of triangular constella-
tions of Aristotelian relations. The latter strategy for establishing a typology of



Fig. 9. The Aristotelian hexagons in the Béziau octagon: (a) JSB (b) SC (c-d) U4

octagons naturally leads to that of considering which types of hexagonal sub-
diagrams are embedded inside the bigger octagonal diagram. Any octagon can
be shown to contain 4 hexagons: since an octagon consists of four diagonals,
each of these can be left out in turn to yield a distinct hexagon (consisting of 3
out of the 4 original diagonals). Thus the Béziau octagon can first and foremost
be considered as a combination of the JSB hexagon in Figure 9a and the SC
hexagon in Figure 9b, with the outer edges completely defined by subalterna-
tion arrows. The Buridan octagon, by contrast, is fundamentally a combination
of the two SC hexagons in Figure 10a-b, with all the subalternation arrows going
downward and two pairs of interlacing n shapes for the contraries and the sub-
contraries. Notice that both with the Béziau octagon and the Buridan octagon
the two remaining hexagons that can be embedded are of the U4 type. How-
ever, with the former in Figures 9c-d the U4 hexagons show up in their standard
shape of Figure 4c, i.e. with the subalternation arrows along the edges and the
(sub)contrary V-shapes on the inside, whereas with the latter in Figures 10c-d
an alternative shape emerges for the U4 hexagons with more acute angles for
the subalternation arrows and the (sub)contrary V-shapes.

6 Complementarities in the Rhombic Dodecahedron

Although in the previous three sections the Aristotelian diagrams have gradually
become more complex, their visual representation remained two-dimensional,
viz. from square to hexagon to octagon. In this section, however, we return to
the complete set of 14 contingent formulae from Classical Propositional Logic
(with the 7 PCDs introduced in Section 2) and their 3D visualisation inside
the RDH. More in particular, we distinguish two different ways in which the



Fig. 10. The Aristotelian hexagons in the Buridan octagon: (a-b) SC (c-d) U4

Fig. 11. Logical complementarity between a Jacoby-Sesmat-Blanché hexagon (left)
and a Buridan octagon (right)

14 formulae can be partitioned into a hexagon (6 formulae) and an octagon (8
formulae) and relate them to the geometrical complementarities between the 3D
embeddings of hexagons and octagons inside the RDH.

Complementarity between the JSB hexagon and the Buridan octagon.
The two diagrams in Figure 11 reveal a first type of logical complementarity:
if we take 6 formulae whose Aristotelian relations constitute a JSB hexagon,
the 8 remaining formulae yield an Aristotelian octagon of the Buridan type6.
A number of authors [4–6, 13, 14] have demonstrated that there are exactly six
different JSB hexagons embedded inside the RDH. On the left in Figure 12 we

6 Since a Buridan octagon is fundamentally a combination of two SC hexagons (see
Figure 10a-b), this first logical complementarity can also be seen as holding between
a JSB hexagon on the one hand and a pair of SC hexagons on the other.



Fig. 12. 3D geometrical complementarity (middle) between a Jacoby-Sesmat-Blanché
hexagon (left) and a rhombicube (right)

Fig. 13. Logical complementarity between a Sherwood-Czezowski hexagon (left) and
a Béziau octagon (right)

see that the embedding of a JSB hexagon constitutes a 2D plane which slices
the 3D RDH solid in two equal parts. It can easily be shown that there are
indeed exactly six planes that contain 6 out of the 14 vertices (i.e. 3 PCDs)
of the RDH. One important result of the present paper is that, for each JSB
hexagon in the RDH, the remaining 8 vertices yield a Buridan octagon, whose
3D embedding in the RDH is the solid visualised on the right in Figure 12.
This object, which has no standard name in the literature on polyhedra, will
be referred to as a rhombicube, the idea being that a cube is put on one of
its edges and is squeezed at the top (edge) to the effect that its front and back
faces turn from a square into a rhombic shape7. The logical complementarity
between the JSB hexagon and the Buridan octagon in Figure 11 thus gets a
very elegant counterpart in the 3D geometrical complementarity of the hexagon
and the rhombicube in the middle of Figure 12.

Complementarity between the SC hexagon and the Béziau octagon.
The operation of creating a partition of the 14 formulae can also be performed

7 The term does show up occasionally, either as an abbreviation for ‘rhombicuboctahe-
dron’, which is a different, Archimedian solid, or else as a (less felicitous) alternative
for the RDH itself.



Fig. 14. 3D geometrical complementarity (middle) between a Sherwood-Czezowski
hexagon (left) and a Béziau octagon (right)

on the basis of the SC hexagon instead of the JSB hexagon. The two diagrams
in Figure 13 thus reveal a second type of logical complementarity: if we take 6
formulae whose Aristotelian relations constitute an SC hexagon, the 8 remain-
ing formulae yield an Aristotelian octagon of the Béziau type. As far as the
embedding of an SC hexagon in a 3D polyhedron is concerned, the only pro-
posal, to our knowledge, is that of Sauriol [13, p. 388], who embeds it into his
tetrahexahedron. The left diagram in Figure 14 shows the 3D embedding of an
SC hexagon in the RDH. This solid is a skew octahedron, i.e. it has 6 vertices
and 8 triangular faces. Given that an SC hexagon can be seen as a Buridan oc-
tagon with one PCD diagonal left out (see Figure 10a-b), the skew octahedron
in Figure 14 can be seen as a rhombicube with 2 vertices (or 1 PCD) ‘sliced
off’. Since there are exactly six rhombicubes embedded in the RDH (namely the
complements of the six JSB hexagons), and each rhombicube contains two SC
octahedra, it follows that there are twelve SC octahedrons inside the RDH. As
for its complement, namely the 3D embedding of a Béziau octagon in the RDH,
the result on the right in Figure 14 is a squeezed hexagonal bipyramid, which is a
solid obtained by sticking together (base to base) two pyramids with a hexagonal
base. As a consequence, the logical complementarity between the SC hexagon
and the Béziau octagon in Figure 13 has as its counterpart the 3D geometrical
complementarity of the octahedron and the hexagonal bipyramid in the middle
of Figure 14. Although, from a strictly logical point of view, the complementari-
ties in Figures 11 and 13 are on a par, there is a considerable difference, as far as
the visual appeal is concerned, between the 3D geometrical complementarities in
Figures 12 and 14. For example, the former has one central symmetry and three
reflection symmetries, whereas the latter only has the central symmetry and one
reflection symmetry. The main reason for this geometrical difference is that SC
hexagons naturally come in pairs (as rhombicubes); the first complementarity
respects this pairing, but the second cuts across it.



7 Conclusions and Prospects

The main aim of this paper has been to provide a more unified account of a
range of Aristotelian diagrams, which are in general treated independently of
one another in the literature. The central part was devoted to a general strategy
for systematically charting the internal structure of the rhombic dodecahedron,
which represents the Aristotelian relations in a Boolean closed set of 14 con-
tingent formulae. Three families of squares are distinguished depending on the
types of PCDs they consist of, 3 families of hexagons in terms of the types of
embedded squares, and 2 families of octagons on the basis of the types of nested
hexagons. In a final part two types of logical complementarities have been ob-
served, namely (i) between a JSB hexagon and a Buridan octagon, and (ii)
between an SC hexagon and a Béziau octagon. The difference in visual appeal of
the corresponding 3D geometrical complementarities supports the claim that the
former partition is more natural than the latter. The next step in this research
project will be to provide an exhaustive typology (by means of combinatorial
analysis) of the Aristotelian subdiagrams of the RDH. Central questions will
be (i) how many families of octagons, decagons and dodecagons can be distin-
guished, and (ii) how many members does each family have (e.g. there are 6
strong JSB hexagons, but 12 SC hexagons inside the RDH).
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