
Metalogical Decorations of Logical Diagrams

Lorenz Demey and Hans Smessaert

Abstract. In recent years, a number of authors have started studying
Aristotelian diagrams containing metalogical notions, such as tautol-
ogy, contradiction, satisfiability, contingency, strong and weak interpre-
tations of (sub)contrariety, etc. The present paper is a contribution
to this line of research, and its main aims are both to extend and to
deepen our understanding of metalogical diagrams. As for extensions,
we not only study several metalogical decorations of larger and less
widely known Aristotelian diagrams, but also consider metalogical dec-
orations of another type of logical diagrams, viz. duality diagrams. At a
more fundamental level, we present a unifying perspective which sheds
new light on the connections between new and existing metalogical di-
agrams, as well as between object- and metalogical diagrams. Overall,
the paper studies two types of logical diagrams (viz. Aristotelian and
duality diagrams) and four kinds of metalogical decorations (viz. those
based on the opposition, implication, Aristotelian and duality relations).
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1. Introduction

The Aristotelian square of oppositions is a diagram that displays four state-
ments or notions, and certain logical relations holding between them. It has a
very rich tradition, going back—together with the discipline of logic itself—to
the works of Aristotle. Over the centuries, authors such as Avicenna, William
of Sherwood, John Buridan, Boole and Frege have studied the square and
other, larger Aristotelian diagrams [15, 16, 40, 48, 63, 67]. Since the begin-
ning of the 21st century, logicians have started studying Aristotelian diagrams
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in a more systematic and mathematically precise way, which has led to sig-
nificant theoretical advances, e.g. concerning the classification of the various
types of Aristotelian diagrams [1, 59, 79, 81].

The overwhelming majority of Aristotelian diagrams that have been
studied so far have object-level decorations: they visualize the Aristotelian
relations holding between formulas coming from (the object language of)
some given logical system (for example, propositional logic [55], modal logic
[35], temporal logic [68], epistemic logic [50], deontic logic [56] and dynamic
logic [22]), or between the natural language expressions of some given lexical
field (for example, color terms [44], singular expressions [75] and subjective
quantification [80]). In the last two or three years, however, authors such as
Béziau and Seuren have also started investigating Aristotelian diagrams that
are decorated with meta-level notions such as tautology, contradiction, sat-
isfiability, contingency, strong and weak interpretations of (sub)contrariety,
etc. [4, 5, 33, 72]. As will be explained later in this paper, this transition
from object- to metalogical decorations of Aristotelian diagrams is quite im-
portant, since it sheds some interesting new light on the ways in which the
Aristotelian relations are usually defined. It should also be emphasized that
these metalogical diagrams are not only important from a strictly theoretical
perspective, but are also relevant in more practically oriented contexts. For
example, it has been argued that the metalogical square can be fruitfully
used in teaching metalogic to certain groups of students [24].

In sum, then, metalogical diagrams are becoming an active topic of
investigation in contemporary philosophical logic. The present paper is a
contribution to this line of research, and its main aims are both to extend and
to deepen our understanding of metalogical diagrams. We will now explain
in some more detail how each of these aims will be achieved.

The paper offers extensions vis-à-vis previous work in at least three
ways. First of all, we will study much larger metalogical diagrams: while pre-
vious work has focused on metalogical squares and hexagons, we will also
study metalogical decorations for larger Aristotelian diagrams, such as oc-
tagons, dodecagons, and even three-dimensional polyhedra such as the rhom-
bic dodecahedron. Secondly, we will also study metalogical decorations for
less widely known families of Aristotelian diagrams. This applies not only to
the larger diagrams mentioned in the first point (obviously, a rhombic dodec-
ahedron is less familiar to most people than an ordinary square of opposi-
tions), but also to the smaller diagrams, such as hexagons: previous work has
focused exclusively on a single family of hexagons, viz. the Jacoby-Sesmat-
Blanché hexagons, but in this paper we will also consider other, less widely
known families of hexagons, such as the ‘Sherwood-Czezowski’ hexagons, the
‘unconnected-4’ hexagons and the ‘unconnected-8’ hexagons. Thirdly, we will
show that metalogical decorations can be given not only for Aristotelian di-
agrams, but also for other types of logical diagrams, such as Hasse diagrams
and, most importantly, duality diagrams.
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There are also various ways in which the paper will deepen our under-
standing of metalogical diagrams. First of all, we will offer a more precise
account of the relationship between object- and metalogical decorations of
Aristotelian diagrams. Secondly, we will discuss the connections between the
new metalogical diagrams presented in this paper and those that were pre-
viously studied. For example, we will show that the metalogical squares and
hexagons studied by Béziau [4, 5], Diaconescu [33] and Seuren [72] can be seen
as subdiagrams or specific instances of the diagrams presented here. Thirdly,
because of these connections, the paper also offers a unifying perspective on
metalogical diagrams. After all, if two seemingly unrelated metalogical dia-
grams can both be seen as specific instances of a single diagram, then they
turn out to be intimately related to each other.

The paper is organized as follows. Sections 2 and 3 mainly prepare the
ground for the analysis that will be presented in the later sections. Section 2
provides a series of increasingly more abstract ways of defining the Aris-
totelian relations, and discusses which of these definitions are best able to
accommodate meta- as well as object-logical decorations of Aristotelian dia-
grams. Next, Section 3 provides some background on other types of logical
relations, viz. the opposition, implication and duality relations. Sections 4–8
contain the core results of this paper: we present and study various metalog-
ical decorations of various kinds of logical diagrams. Section 4 studies several
Aristotelian diagrams that are decorated with the opposition relations, and
discusses their connections with earlier work on metalogical decorations of
Aristotelian diagrams. Next, Section 5 studies Aristotelian diagrams for the
implication relations, and explores their connections with Aristotelian dia-
grams for the opposition relations (which were studied in Section 4) and for
abstract ordering relations. Section 6 concludes our study of metalogical dec-
orations for Aristotelian diagrams, by exploring some Aristotelian diagrams
for the Aristotelian relations themselves, and for the duality relations. After
this, we turn from metalogical Aristotelian diagrams to metalogical duality
diagrams. In Section 7, we first study duality diagrams for the opposition
and implication relations. Section 8 then explores some duality diagrams for
the Aristotelian relations, and for the duality relations themselves. Finally,
Section 9 summarizes the results that have been obtained in this paper, and
highlights some general themes that we have touched upon along the way.

2. Defining the Aristotelian Relations

Before we start constructing new metalogical diagrams, it is important to
clearly understand why a single type of diagrams—viz. Aristotelian diagrams—
can be used for meta- as well as object-logical decorations. In other words,
how is it possible for the Aristotelian relations to hold between metalogi-
cal statements as well as between object-logical formulas? The exact way
in which the Aristotelian relations are defined turns out to be highly rele-
vant in answering this question. In this section, we will introduce a series of
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increasingly more abstract ways of defining the Aristotelian relations, and
discuss to what extent these definitions are able to accommodate metalogical
statements as well as object-logical formulas.

The oldest definition dates back to Aristotle himself, and has been used
throughout the history of philophical logic [62]. In contemporary work on
Aristotelian diagrams, too, it is by far the most widely used definition [8, 9].
The formulation is entirely informal, and looks as follows:

Definition 2.1. Two statements ϕ and ψ are said to be

contradictory iff ϕ and ψ cannot be true together and
ϕ and ψ cannot be false together,

contrary iff ϕ and ψ cannot be true together and
ϕ and ψ can be false together,

subcontrary iff ϕ and ψ can be true together and
ϕ and ψ cannot be false together,

in subalternation iff ϕ entails ψ and
ψ does not entail ϕ.

Because of its informal nature, this definition can apply both to object-
and to metalogical statements. To illustrate this, consider the ambiguity of
the word ‘true’ in the definition of contrariety: this word can stand for ‘truth
in a model’ (in case two object-logical formulas are said to be contrary), or
for ‘absolute, informal truth’ (in case two metalogical statements are said to
be contrary). A problem with Definition 2.1 is that it makes the Aristotelian
relations entirely insensitive to the ‘background logic’. Which Aristotelian
relation holds between two (object-logical) formulas partially depends on the
logical system that is being assumed. The well-known issue of ‘existential
import’ can be seen as an illustration of this problem: in classical syllogistics,
there is a subalternation from ∀x(Sx→ Px) to ∃x(Sx∧Px), but in contem-
porary predicate logic, these formulas stand in no Aristotelian relation at all
[30, Section 4]. In order to deal with this problem, a new and more precise
way of defining the Aristotelian relations has been proposed [75, 79, 80]:

Definition 2.2. Let S be a logical system, which is assumed to have Boolean
operators and a model-theoretic semantics |=. Two formulas ϕ,ψ ∈ LS are
said to be

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ,
S-subcontrary iff S 6|= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
in S-subalternation iff S |= ϕ→ ψ and S 6|= ψ → ϕ.

First of all, note that this definition stays very close to the original,
more informal Definition 2.1. The condition that ϕ and ψ cannot be true
together is formalized as S |= ¬(ϕ∧ψ), i.e. S has no models in which ϕ and ψ
are simultaneously true; similarly, the condition that ϕ and ψ cannot be false
together is formalized as S |= ϕ ∨ ψ, or equivalently, S |= ¬(¬ϕ ∧ ¬ψ), i.e. S
has no models in which ϕ and ψ are simultaneously false. Furthermore, note
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that unlike Definition 2.1, Definition 2.2 is capable of dealing with the logic-
sensitivity of the Aristotelian relations; for example, it is now possible to say
that two formulas are S1-contrary, but S2-contradictory, for logical systems S1
and S2. The downside of explicitly specifying the logical system S, however,
is that Definition 2.2 only applies to object-logical formulas: conditions such
as S |= ¬(ϕ ∧ ψ) and S |= ϕ → ψ are only meaningful for formulas ϕ and ψ
from the object language LS.

A key insight of Definition 2.2 is that the Aristotelian relations are fully
determined by the Boolean structure of the logical system S. This suggests
a third and final way of defining these relations, which abstracts away from
the concrete details of S, and only focuses on its Boolean structure:

Definition 2.3. Let B = 〈B,∧B,∨B,¬B,>B,⊥B〉 be a Boolean algebra. Two
elements x, y ∈ B are said to be

B-contradictory iff x ∧B y = ⊥B and x ∨B y = >B,
B-contrary iff x ∧B y = ⊥B and x ∨B y 6= >B,
B-subcontrary iff x ∧B y 6= ⊥B and x ∨B y = >B,
in B-subalternation iff x ∧B y = x and x ∧B y 6= y.

Because of its level of abstraction, this definition is fully general. First,
note that it subsumes Definition 2.2 as a special case: if S is a logical sys-
tem as specified in Definition 2.2 (i.e. having Boolean connectives), then its
Lindenbaum-Tarski algebra B(S) := {[ϕ] | ϕ ∈ LS} is a Boolean algebra, and
in the case of contrariety, for example, we have for all ϕ,ψ ∈ LS:1

ϕ and ψ are S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ
iff [ϕ] ∧ [ψ] = ⊥ and [ϕ] ∨ [ψ] 6= >
iff [ϕ] and [ψ] are B(S)-contrary.

Another set of special cases of Definition 2.3 arises if we take the Boolean
algebra B to be the powerset ℘(X) of some set X. In this case, two sets
X1, X2 ⊆ X are ℘(X)-contrary iff X1 ∩X2 = ∅ and X1 ∪X2 6= X—in other
words, iff X1 and X2 are disjoint but not exhaustive. If we take X to be
the Lindenbaum-Tarski algebra B(S) of some (non-trivial) logical system S,
we see how Aristotelian relations can hold between metalogical statements.
For example, if we consider the sets X1 := {>}, X2 := {⊥} ⊆ B(S), we see
that X1 and X2 are ℘(B(S))-contrary, which means exactly that the meta-
logical properties of being an S-tautology and being an S-contradiction—or
equivalently, the metalogical statements “ϕ is an S-tautology” and “ϕ is an
S-contradiction”—are contrary to each other. Finally, it will also be inter-
esting to consider the case X := B(S) × B(S), i.e. X is the set of all pairs
of (equivalence classes of) formulas of the logical system S. Now we can
define X1 := {([ϕ], [ψ]) | ϕ and ψ are S-contrary} and X2 := {([ϕ], [ψ]) |

1We make use here of the fact that the Aristotelian relations are only defined up to logical

equivalence, i.e. if ϕ ≡S ϕ
′ and ψ ≡S ψ

′, then R(ϕ,ψ) iff R(ϕ′, ψ′), for all Aristotelian
relations R. This can easily be derived from Definition 2.2.
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ϕ and ψ are S-subcontrary}, and see that X1 and X2 are ℘(B(S) × B(S))-
contrary, which means exactly that the metalogical relations of being S-
contrary and being S-subcontrary—or equivalently, the metalogical state-
ments “ϕ and ψ are S-contrary” and “ϕ and ψ are S-subcontrary”—are
themselves contrary to each other.

Definition 2.3 thus explains why the Aristotelian relations can hold be-
tween meta- as well as object-logical statements: these relations are defined
in a Boolean algebra, and this Boolean algebra can be situated at the object-
logical level—in the the case of B(S)—, or at the metalogical level—in the
cases of ℘(B(S)) and ℘(B(S)×B(S)). In Sections 4, 5 and 6 we will study met-
alogical decorations of Aristotelian diagrams that are based on both of the
latter cases. We finish this section by summarizing the dialectical progression
that has been developed:

• Definition 2.1 accommodates object- and metalogical statements,
but fails to handle logic-sensitivity (at the object-level).
• Definition 2.2 is able to handle logic-sensitivity (at the object-level),

but can only accommodate object-logical formulas.
• Definition 2.3 accommodates object- and metalogical statements,

and is able to handle logic-sensitivity (at the object- and meta-level).

3. Opposition, Implication and Duality

In this section, we will introduce some other types of logical relations that are
closely related to the Aristotelian relations, and that will play an important
role later in the paper. Subsection 3.1 discusses the opposition and implication
relations, which will be studied extensively in Sections 4, 5 and 7. Next,
Subsection 3.2 deals with the duality relations, which will figure prominently
in Sections 6 and 8.

3.1. The Opposition and Implication Relations

In [79] it is pointed out that the set of Aristotelian relations has a number
of problematic, or at least peculiar, properties; for example, there is a clear
conceptual asymmetry between the relations of contradiction, contrariety and
subcontrariety on the one hand, and the relation of subalternation on the
other. Furthermore, it is argued that these properties can best be explained
by viewing the Aristotelian relations as being hybrid between two other types
of relations, viz. the opposition and implication relations.

We will now define these two new types of relations. Recall that in
Section 2, we showed that there are at least three distinct ways of defining
the Aristotelian relations; in exactly the same way, there are also at least
three ways of defining the opposition and implication relations. In this paper,
however, we will only be dealing with these relations at the object-logical level
(i.e. as holding between formulas of the language LS of some logical system
S), and thus there is no need for the full generality that was provided by
Definition 2.3. Hence, we can define the opposition and implication relations
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Figure 1. Code for visualizing (a) the opposition relations
and (b) the implication relations

in a way that is analogous to Definition 2.2 (if desired, the analogues of
Definitions 2.1 and 2.3 could easily be given too).

Definition 3.1. Let S be a logical system as in Definition 2.2. Two formulas
ϕ,ψ ∈ LS are said to be

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ,
S-subcontrary iff S 6|= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
S-non-contradictory iff S 6|= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ.

These relations are abbreviated as CDS, CS, SC S and NCDS, respectively.
The setOGS consisting of these four relations is called the opposition geometry
of S, i.e. OGS := {CDS,CS,SC S,NCDS}.

Definition 3.2. Let S be a logical system as in Definition 2.2. Two formulas
ϕ,ψ ∈ LS are said to be

in S-bi-implication iff S |= ϕ→ ψ and S |= ψ → ϕ,
in S-left-implication iff S |= ϕ→ ψ and S 6|= ψ → ϕ,
in S-right-implication iff S 6|= ϕ→ ψ and S |= ψ → ϕ,
in S-non-implication iff S 6|= ϕ→ ψ and S 6|= ψ → ϕ.

These relations are abbreviated as BI S, LI S, RI S and NI S, respectively. The
set IGS consisting of these four relations is called the implication geometry
of S, i.e. IGS := {BI S,LI S,RI S,NI S}.

The opposition and implication relations will be visualized using the
code shown in Figure 1. It should be noted that S-left-implication coin-
cides with S-subalternation; consequently, the Aristotelian geometry AGS :=
{CDS,CS,SC S,LI S} is hybrid between the opposition and implication ge-
ometries, i.e. AGS ⊆ OGS ∪ IGS. Furthermore, the Aristotelian geometry is
hybrid in an informationally optimal fashion. To explain this claim, [79] in-
troduces a well-motivated information measure m that allows us to compare
the information levels of any two opposition and/or implication relations.
Next, note that any two formulas stand in exactly one opposition relation
and in exactly one implication relation. Essentially, if the formulas happen
to be S-contingent, it can be shown that one of these two relations is strictly
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Figure 2. The (a) opposition, (b) Aristotelian and (c) im-
plication square for {�p,♦p,�¬p,♦¬p}

more informative than the other (according to m) iff it is Aristotelian [79,
Section 5].2

To illustrate this, consider the modal logic S5 and the S5-contingent
formulas �p, ♦p, �¬p and ♦¬p. It is well-known that the Aristotelian re-
lations holding between these formulas yield a classical Aristotelian square,
which is shown in Figure 2(b). However, in exactly the same fashion, the
opposition and implication relations holding between these formulas yield
opposition and implication squares, which are shown in Figure 2(a) and (c),
respectively. Now consider some pairs of formulas:

• �p and �¬p: these stand in the opposition relation CS5 and the impli-
cation relation NI S5; according to m, CS5 is strictly more informative
than NI S5, and CS5 is an Aristotelian relation, while NI S5 is not.
• ♦p and �¬p: these stand in the opposition relation CDS5 and the impli-

cation relation NI S5; according to m, CDS5 is strictly more informative
than NI S5, and CDS5 is an Aristotelian relation, while NI S5 is not.
• �p and ♦p: these stand in the opposition relation NCDS5 and the impli-

cation relation LI S5; according to m, LI S5 is strictly more informative
than NCDS5, and LI S5 is an Aristotelian relation, while NCDS5 is not.

The Aristotelian square in Figure 2(b) is thus hybrid between the op-
position and implication squares in Figure 2(a) and (c), respectively: every
pair of formulas stands in an opposition relation and an implication relation,
and the Aristotelian square visualizes exactly the more informative of these
two relations.

The opposition and implication geometries were primarily introduced
because of their relation to the Aristotelian geometry, but they also turn out
to be very interesting in their own right. We now briefly mention some basic
results from [79] that will be useful later in this paper.

Lemma 3.3. For all formulas ϕ,ψ ∈ LS, the following hold:

2 If neither of the two relations is strictly more informative than the other, then neither is
Aristotelian, and thus the two formulas stand in no Aristotelian relation at all.
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1a) CDS(ϕ,ψ) iff CDS(¬ϕ,¬ψ), 1b) BI S(ϕ,ψ) iff BI S(¬ϕ,¬ψ),
2a) CS(ϕ,ψ) iff SC S(¬ϕ,¬ψ), 2b) LI S(ϕ,ψ) iff RI S(¬ϕ,¬ψ),
3a) SC S(ϕ,ψ) iff CS(¬ϕ,¬ψ), 3b) RI S(ϕ,ψ) iff LI S(¬ϕ,¬ψ),
4a) NCDS(ϕ,ψ) iff NCDS(¬ϕ,¬ψ), 4b) NI S(ϕ,ψ) iff NI S(¬ϕ,¬ψ).

Lemma 3.4. For all formulas ϕ,ψ ∈ LS, the following hold:

1a) CDS(ϕ,ψ) iff BI S(¬ϕ,ψ), 1b) CDS(ϕ,ψ) iff BI S(ϕ,¬ψ),
2a) CS(ϕ,ψ) iff RI S(¬ϕ,ψ), 2b) CS(ϕ,ψ) iff LI S(ϕ,¬ψ),
3a) SC S(ϕ,ψ) iff LI S(¬ϕ,ψ), 3b) SC S(ϕ,ψ) iff RI S(ϕ,¬ψ),
4a) NCDS(ϕ,ψ) iff NI S(¬ϕ,ψ), 4b) NCDS(ϕ,ψ) iff NI S(ϕ,¬ψ),
5a) BI S(ϕ,ψ) iff CDS(¬ϕ,ψ), 5b) BI S(ϕ,ψ) iff CDS(ϕ,¬ψ),
6a) LI S(ϕ,ψ) iff SC S(¬ϕ,ψ), 6b) LI S(ϕ,ψ) iff CS(ϕ,¬ψ),
7a) RI S(ϕ,ψ) iff CS(¬ϕ,ψ), 7b) RI S(ϕ,ψ) iff SC S(ϕ,¬ψ),
8a) NI S(ϕ,ψ) iff NCDS(¬ϕ,ψ), 8b) NI S(ϕ,ψ) iff NCDS(ϕ,¬ψ).

Lemma 3.5. For all formulas ϕ,ψ ∈ LS, the following hold:

1. there is exactly one R ∈ OGS such that R(ϕ,ψ),
2. there is exactly one S ∈ IGS such that S(ϕ,ψ).

Lemma 3.5 essentially states that OGS and IGS are partitions of B(S)×
B(S) (recall that B(S) denotes the Lindenbaum-Tarski algebra of S). In the
contemporary study of Aristotelian diagrams, partitions play an important
role, because of their intimate connection to bitstring semantics [25, 30, 82].
In this paper, this connection will not be explored in any detail; we will suf-
fice by briefly describing the analogy between the partition-based bitstring
semantics for classical propositional logic (CPL) and the partition-based bit-
string semantics for the opposition and implication relations.

In CPL, the formulas p and q induce the partition {p ∧ q, p ∧ ¬q,¬p ∧
q,¬p ∧ ¬q} of the class of all CPL-models (cf. the 4 rows in a truth table
for a binary propositional connective); therefore, all Boolean combinations
of formulas in this partition can be represented by bitstrings of length 4.
Entirely analogously, the sets {([ϕ], [ψ]) | S |= ¬(ϕ∧ψ)} and {([ϕ], [ψ]) | S |=
ϕ ∨ ψ} induce the partition {CDS,CS,SC S,NCDS} = OGS of B(S) × B(S);
therefore, in this partition as well, all Boolean combinations of relations can
be represented by bitstrings of length 4. Similar remarks apply to IGS.

3.2. The Duality Relations

The final set of logical relations that we will study consists of the well-known
duality relations. Like the Aristotelian relations (but unlike the opposition
and implication relations), the duality relations will be used in this paper
at both the object- and the metalogical level, i.e. as holding between formu-
las/operators of the language LS of some logical system S as well as between
metalogical statements/operators. They will therefore be defined in a fully
general way (analogous to Definition 2.3 of the Aristotelian relations).

Definition 3.6. Consider Boolean algebras A = 〈A,∧A,∨A,¬A,>A,⊥A〉 and
B = 〈B,∧B,∨B,¬B,>B,⊥B〉. The duality relations between n-ary operators
O1, O2 : An → B are defined as follows:
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Figure 3. (a) Code for visualizing the duality relations; (b)
duality square for {p ∧ q,¬p ∧ ¬q, p ∨ q,¬p ∨ ¬q}

• O1 and O2 are identical iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = O2(a1, . . . , an),
• O1 and O2 are each other’s external negation iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = ¬BO2(a1, . . . , an),
• O1 and O2 are each other’s internal negation iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = O2(¬Aa1, . . . ,¬Aan),

• O1 and O2 are each other’s dual iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = ¬BO2(¬Aa1, . . . ,¬Aan).

These relations are abbreviated as id, eneg, ineg and dual, respectively.
The set DG consisting of these four relations is called the duality geometry ,
i.e. DG := {id,eneg, ineg,dual}.

Although the duality relations are strictly speaking defined between
operators O1, O2 : An → B, it will be convenient to also be able to ap-
ply them to the elements of B directly: we will say that O1(a1, . . . , an)
and O2(a1, . . . , an) stand in some duality relation R iff the operators O1

and O2 stand in R. Consider, for example, conjunction and disjunction in
classical propositional logic (CPL): these can be viewed as binary operators
∧,∨ : B(CPL)× B(CPL)→ B(CPL). It trivially holds for all ϕ,ψ ∈ LCPL that
ϕ ∧ ψ ≡CPL ¬(¬ϕ ∨ ¬ψ), so by Definition 3.6 we have dual(∧,∨). Moving
from operators to concrete formulas, we can also say that dual(p ∧ q, p ∨ q)
and dual(¬p ∧ ¬q,¬p ∨ ¬q). In exactly the same way, it can be shown
that ineg(p ∧ q,¬p ∧ ¬q), ineg(p ∨ q,¬p ∨ ¬q), eneg(p ∧ q,¬p ∨ ¬q) and
eneg(p ∨ q,¬p ∧ ¬q). Using the visual code shown in Figure 3(a), we thus
obtain the duality square shown in Figure 3(b).

When viewed as relations between elements of B(S), the duality rela-
tions id and eneg correspond exactly to the implication relation BI S and
the opposition relation CDS, respectively. Furthermore, looking at the dual-
ity square in Figure 3(b), it looks like dual corresponds to LI S, while ineg
corresponds to both CS and SC S. Observations such as these might explain
why some authors [20, 58] have come close to straightforwardly identifying
Aristotelian and duality squares, for example by using Aristotelian termi-
nology to describe a duality square (or vice versa), or by viewing one as a
generalization of the other.
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However, it has also been argued extensively that although AG and DG
sometimes yield similar-looking diagrams, they are two conceptually inde-
pendent sets of logical relations, and should thus not be confused with each
other [29, 54, 77, 84]. For example, it is easy to show that all duality relations
are symmetric, i.e. for all R ∈ DG and for all operators O1, O2, it holds that
R(O1, O2) iff R(O2, O1); this clearly shows that dual cannot be identified
with LI S, since the latter is asymmetric. Another important difference is that
unlike the Aristotelian relations, the duality relations are functional, i.e. for
all R ∈ DG and for all operators O1, there exists a unique operator O2 such
that R(O1, O2).3 The duality relation R can thus be seen as a function, and
we will often write O2 = R(O1). For example, since dual(∧,∨), we can also
say that dual(∧) = ∨. Since the duality relations are symmetric, the corre-
sponding functions are idempotent, i.e. R(R(O1)) = O1 for all R ∈ DG and
operators O1;4 in other words: R ◦ R = id. More generally, it is well-known
that when its elements are viewed as functions, DG forms a Klein four group
[36, 53, 83, 65, 66], which has the following Cayley table:

◦ id eneg ineg dual
id id eneg ineg dual

eneg eneg id dual ineg
ineg ineg dual id eneg
dual dual ineg eneg id

This Cayley table and the duality square in Figure 4(a) might suggest
that id(O), eneg(O), ineg(O) and dual(O) are pairwise distinct for all op-
erators O. However, there are also exist operators O that are their own dual,
i.e. dual(O) = O = id(O); it then follows that also eneg(O) = ineg(O),
and thus the duality square in Figure 4(a) degenerates into the horizontal
duality diagram in Figure 4(b). Viewing the elements of DG as relations, we
thus find that id ∩ dual 6= ∅ 6= eneg ∩ ineg. A typical example of an op-
erator that is its own dual is negation ¬ : B(S) → B(S), since ¬ϕ ≡S ¬¬¬ϕ
for all ϕ ∈ LS . Completely analogously, there also exist operators O that
are their own internal negation, i.e. ineg(O) = O = id(O); it then follows
that also eneg(O) = dual(O), and thus the duality square in Figure 4(a)
degenerates into the vertical duality diagram in Figure 4(c). Again viewing
the elements of DG as relations, we find that id ∩ ineg 6= ∅ 6= eneg ∩ dual.
A typical example of an operator that is its own internal negation is the bi-
conditional ↔ : B(CPL) × B(CPL) → B(CPL), since ϕ ↔ ψ ≡CPL ¬ϕ ↔ ¬ψ
for all ϕ,ψ ∈ LCPL.5

3For example, the formula p∧q is contrary to many formulas (e.g. to ¬p, to ¬q, to ¬p∧¬q,
etc.), but it has only one internal negation (viz. ¬p ∧ ¬q).
4Proof: R(O1) = O2 ⇔ R(O1, O2) ⇔ R(O2, O1) ⇔ R(O2) = O1, and thus R(R(O1)) =

R(O2) = O1.
5After having dealt with operators that coincide with their own dual or their own internal
negation, one might wonder whether there are also operators that coincide with their own

external negation. However, it is easy to show that if an operator O : An → B satisfies
eneg(O) = O, then B has to be the trivial Boolean algebra in which ⊥B = >B.
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Figure 4. (a) Non-degenerated duality square, (b) degen-
erated duality diagram for operators that that are their own
dual, (c) degenerated duality diagram for operators that are
their own internal negation

The basic perspective on duality that has been described so far can
be extended and generalized in various ways. For example, duality patterns
for composed operators are studied in [21]. Another generalization, which will
turn out to be very useful in Section 8, is the so-called generalized Post duality
[41, 51]. Recall that according to Definition 3.6, the ineg-relation involves
negating all the operator’s arguments. Although the most canonical examples
of duality indeed obey this requirement—e.g. the internal negation of p ∧ q
is ¬p ∧ ¬q; see Figure 3(b)—, there are also important examples in which
internal negation is applied to only one of the operator’s arguments, such
as generalized quantifiers (on the relational perspective), subject negation,
and the public announcement operator [22, 29, 37, 45, 47]. Generalized Post
duality accommodates these examples, by ‘splitting’ the ineg-relation into n
independent relations ineg1, . . . , inegn; as a consequence, the dual-relation
is also split into n independent relations dual1, . . . ,dualn.

Definition 3.7. Consider Boolean algebras A = 〈A,∧A,∨A,¬A,>A,⊥A〉 and
B = 〈B,∧B,∨B,¬B,>B,⊥B〉. The generalized Post duality relations between
n-ary operators O1, O2 : An → B are defined as follows:

• id and eneg are defined as before (Definition 3.6),
• for 1 ≤ i ≤ n, we define inegi(O1, O2) :⇔
∀a1, . . . , an∈A : O1(a1, . . . , an) = O2(a1, . . . , ai−1,¬Aai, ai+1, . . . , an),
• for 1 ≤ i ≤ n, we define duali(O1, O2) :⇔
∀a1, . . . , an∈A : O1(a1, . . . , an) = ¬BO2(a1, . . . , ai−1,¬Aai, ai+1, . . . , an).

From the perspective of generalized Post duality, an n-ary operator O
thus possesses n+ 1 independent negation positions, viz. 1 external negation
and n internal negations. Consequently, if n > 1, the generalized Post duality
behavior of such an n-ary operator cannot be visualized by means of a simple
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Figure 5. (a) Generalized Post duality cube, and (b–c) two
generalized Post duality squares

square diagram, but rather requires an (n + 1)-dimensional hypercube. For
the binary operator of conjunction, for instance, we have ineg1(p∧q,¬p∧q),
dual1(p∧ q, p∨¬q), ineg2(p∧ q, p∧¬q), dual2(p∧ q,¬p∨ q), etc.; all these
facts can be visualized by means of a three-dimensional generalized Post du-
ality cube, which is shown in Figure 5(a).6 Note that ineg1 ◦ ineg2 and
eneg◦ ineg1 ◦ ineg2 are the classical ineg- and dual-relations, respectively.
Furthermore, it can be shown group-theoretically that the generalized Post
duality cube in Figure 5(a) contains exactly 14 duality squares as subdia-
grams [21], two of which are shown in Figure 5(b–c).

Finally, it should be noted that there are binary operators O such that
ineg1(O) = ineg2(O) (in this case, it also holds that O is its own ‘clas-
sical’ internal negation, since ineg(O) = (ineg1 ◦ ineg2)(O) = (ineg1 ◦
ineg1)(O) = id(O) = O). For example, for the operator O : B(S5)×B(S5)→
B(S5) : (ϕ,ψ) 7→ �(ϕ ↔ ψ) it holds that ineg1(O) = ineg2(O), since
�(¬ϕ ↔ ψ) ≡S5 �(ϕ ↔ ¬ψ).7 In such cases, the generalized Post dual-
ity cube degenerates into a generalized Post duality square, which is shown
in Figure 6(a). If we ignore the classical ineg- and dual-relations, this square
can be decomposed into a square for ineg1/dual1 and one for ineg2/dual2,
which are shown in Figure 6(b) and (c), respectively.

6Note that in case of generalized duality diagrams, we attach subscripts to the diagram’s
ineg- and dual-edges to indicate which inegi or duali-relation they represent. If an ineg-

or dual-edge does not have any subscript, it still represents the classical ineg- or dual-
relation, respectively. Finally, note that in the cube in Figure 5(a) only ineg1, ineg2, and
dual have been visualized, for reasons of visual simplicity (eneg corresponds to the long

diagonals of the cube, ineg corresponds to the diagonals of the top and bottom faces of
the cube, dual1 corresponds to the diagonals of the front and back faces of the cube, and

dual2 corresponds to the diagonals of the left and right faces of the cube).
7One might wonder why we do not stick to the simpler example of the biconditional (↔),
since it also holds that ineg1(↔) = ineg2(↔). However, for the biconditonal we even have
ineg1(↔) = ineg2(↔) = eneg(↔), and thus its generalized Post duality cube does not

simply degenerate into a square, but even further, into a binary duality diagram resembling
the one shown in Figure 4(c).
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Figure 6. (a) Degenerated generalized Post duality cube
for binary operators whose ineg1 and ineg2 coincide, and
its decomposition into two generalized Post duality squares
for (b) ineg1/dual1 and (c) ineg2/dual2

4. Aristotelian Diagrams for the Opposition Relations

We have now arrived at the core sections of the paper, which will be devoted
to constructing and studying various metalogical decorations of various kinds
of logical diagrams. In this section, we will study Aristotelian diagrams for the
opposition geometry (OG).8 Subsection 4.1 introduces an Aristotelian rhom-
bic dodecahedron for OG. Subsections 4.2–4.5 study a number of interesting
subdiagrams of this rhombic dodecahedron, and discuss their connections
with earlier work on metalogical decorations of Aristotelian diagrams.

4.1. An Aristotelian Rhombic Dodecahedron for the Opposition Relations

It is well-known that if we take the Boolean closure of the CPL-fragment
{p ∧ q, p ∧ ¬q, ¬p ∧ q,¬p ∧ ¬q}, we get a Boolean algebra of 16 formulas,
viz. the binary connectives applied to the propositional atoms p and q. This
Boolean algebra can be visualized by means of an ordinary (two-dimensional)
Hasse diagram. It was shown in [85] that this Hasse diagram can also be
visualized as a three-dimensional polyhedron, viz. a rhombic dodecahedron
(RDH). In [55, 78], however, it is shown that (a variant of) the RDH can
also be used to visualize the Aristotelian relations holding in this Boolean
algebra. Furthermore, the Hasse RDH and the Aristotelian RDH turn out to
be intimately related to each other (this was already suggested in [74]; the
mathematical details are worked out in [28]).

Given the close analogy between the CPL-fragment {p∧ q, p∧¬q, ¬p∧
q,¬p ∧ ¬q} and the opposition geometry OG = {CD ,C ,SC ,NCD} that
was described at the end of Subsection 3.1 (in particular, see Lemma 3.5), it
should not be surprising that very similar results can be obtained for OG. We
begin by considering the Boolean closure of OG, i.e. ℘∪(OG) := {

⋃
X | X ⊆

OG}. This is a Boolean algebra with 16 elements; its bottom element is the
empty relation over B(S), and its top element is CD∪C ∪SC ∪NCD = B(S)×

8Throughout this section (and the next ones), we will usually omit reference to the logical
system S, and thus simply write OG instead of OGS, CD instead of CDS, etc.
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Figure 7. Two-dimensional Hasse diagram for ℘∪(OG)

Figure 8. (a) Hasse and (b) Aristotelian rhombic dodeca-
hedron for ℘∪(OG)

B(S), i.e. the universal relation over B(S). Figure 7 shows a (two-dimensional)
Hasse diagram for ℘(OG). Following Zellweger’s [85] suggestion, this Hasse
diagram can also be visualized as a rhombic dodecahedron; this Hasse RDH
for ℘∪(OG) is shown in Figure 8(a). The corresponding Aristotelian RDH is
shown in Figure 8(b).9

The elements in the Hasse RDH and the Aristotelian RDH are not
formulas of some logical system S—i.e. elements of B(S)—, but rather binary

9Note that the Aristotelian RDH in Figure 8(b) contains only 14 relations: like almost all
Aristotelian diagrams in the literature, it does not contain ℘∪(OG)’s bottom element ∅
and top element B(S)× B(S). (It has been suggested that these elements are actually not

absent from Aristotelian diagrams, but should rather be thought of as coinciding in the
diagrams’ centers of symmetry [69, 74]; recently, it has been shown that this suggestion

is essentially correct, and can be derived from a general mathematical account of the
relationship between Hasse diagrams and Aristotelian diagrams [28].)
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relations defined over that system—i.e. elements of ℘(B(S) × B(S))—; both
of these RDHs are thus metalogical diagrams. In particular, the Aristotelian
RDH forOG in Figure 8(b) is by far the largest and most complex Aristotelian
diagram with a metalogical decoration that has been studied thus far.

The internal structure of the Aristotelian RDH for OG can best be
described in terms of its subdiagrams. For example, it is well-known that
every Aristotelian RDH—regardless of its decoration—contains exactly six
strong Jacoby-Sesmat-Blanché hexagons [55, 69, 74, 80].10 Figure 9 shows
what these hexagons look like in the concrete case of the Aristotelian RDH for
OG. In ongoing research [32, 81], we are working on an exhaustive typology
of all subdiagrams that can be found inside an Aristotelian RDH (again,
regardless of its decoration). All these results can then straightforwardly be
applied to the specific case of the Aristotelian RDH for OG. In the next few
subsections, however, we will not strive for such exhaustiveness, but rather
focus on some specific subdiagrams of this Aristotelian RDH that turn out
to be particularly interesting.

4.2. Béziau’s Hexagon for Tautology and Related Metalogical Notions

One of the subdiagrams of the Aristotelian RDH for OG that turns out to
be particularly interesting is the JSB hexagon shown in Figure 10(a). This
diagram does not occur in the list of six given in Figure 9, because it is a weak
JSB hexagon; after all, the join of its contrary elements is C ∪ SC ∪ NCD ,
which is not the top element of ℘∪(OG). Furthermore, this hexagon can also
be reformulated using metalogical statements about formulas ϕ,ψ ∈ LS, as
shown in Figure 10(b).

Let’s now see what happens if we fill in the same formula ϕ twice in these
metalogical statements, as is shown in Figure 11(a). In terms of relations,
this means that we are intersecting each relation R ∈ ℘∪(OG) with the
identity relation ∆ := {([ϕ], [ϕ]) | ϕ ∈ LS} on B(S), and are thus no longer
working in the Boolean algebra ℘∪(OG), but rather in the Boolean algebra
℘∪({R ∩ ∆ | R ∈ OG}) = {(

⋃
X ) ∩ ∆ | X ⊆ OG}. Assuming that the

underlying logical system S is consistent,11 we get:

CD(ϕ,ϕ) iff S |= ¬(ϕ ∧ ϕ) and S |= ϕ ∨ ϕ iff impossible,
C (ϕ,ϕ) iff S |= ¬(ϕ ∧ ϕ) and S 6|= ϕ ∨ ϕ iff ϕ is a contradiction,

SC (ϕ,ϕ) iff S 6|= ¬(ϕ ∧ ϕ) and S |= ϕ ∨ ϕ iff ϕ is a tautology,
NCD(ϕ,ϕ) iff S 6|= ¬(ϕ ∧ ϕ) and S 6|= ϕ ∨ ϕ iff ϕ is a contingency.

10The Jacoby-Sesmat-Blanché (JSB) hexagons are so-called because they were first studied
in the 1950s by Jacoby [43], Sesmat [70] and Blanché [10, 11, 12, 13] (back then not

with metalogical decorations, of course). The distinction between strong and weak JSB

hexagons was first introduced by Pellissier [64]. Using the terminology of Definition 2.3,
a JSB hexagon is said to be strong iff the join of its three contrary elements is the top

element of the Boolean algebra in which it is defined; it is said to be weak otherwise. For

example, the JSB hexagon in Figure 9(a) is strong, because its contrary elements are CD ,
C and SC ∪ NCD , and their join CD ∪ C ∪ (SC ∪ NCD) is indeed the top element of

℘∪(OG).
11We will return to this assumption at the end of this subsection.
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Figure 9. The six strong Jacoby-Sesmat-Blanché hexagons
that are subdiagrams of the Aristotelian RDH for OG

The impossibility of CD(ϕ,ϕ)—i.e. the fact that CD∩∆ = ∅—has an impor-
tant consequence for the the type of Aristotelian diagram that we are dealing
with: even though the original JSB hexagon in Figure 10 is a weak one, the
new JSB hexagon in Figure 11 is strong. After all, although C ∪ SC ∪ NCD
is not the top element of ℘∪(OG), the fact that CD ∩ ∆ = ∅ entails that
(C ∩∆) ∪ (SC ∩∆) ∪ (NCD ∩∆) = (C ∪ SC ∪NCD) ∩∆ is indeed the top
element of ℘∪({R ∩∆ | R ∈ OG}). Furthermore, we also find that



18 Lorenz Demey and Hans Smessaert

Figure 10. A weak Jacoby-Sesmat-Blanché hexagon inside
the Aristotelian RDH for ℘(OG), shown in terms of (a) re-
lations and (b) statements

(ϕ,ϕ) ∈ CD ∪ SC ∪NCD iff SC (ϕ,ϕ) or NCD(ϕ,ϕ)
iff ϕ is a tautology or ϕ is a contingency
iff ϕ is satisfiable,

(ϕ,ϕ) ∈ CD ∪ C ∪NCD iff C (ϕ,ϕ) or NCD(ϕ,ϕ)
iff ϕ is a contradiction or ϕ is a contingency
iff ϕ is a not a tautology,

(ϕ,ϕ) ∈ CD ∪ C ∪ SC iff C (ϕ,ϕ) or SC (ϕ,ϕ)
iff ϕ is a contradiction or ϕ is a tautology
iff ϕ is a not a contingency.

By filling in the same formula twice, the six relations in the original
JSB hexagon in Figure 10 thus turn out to correspond to some well-known
metalogical notions, such as being a tautology, being satisfiable, being a con-
tradiction and being contingent. At this point, it might be objected that
two of the six relations do not correspond to a ‘primitive’ metalogical notion:
(CD∪C∪NCD)∩∆ and (CD∪C∪SC )∩∆ can only be ‘negatively described’,
as not being a tautology and not being a contingency, respectively. However,
this discrepancy in lexicalization is entirely to be expected, since it is perfectly
in line with previous, empirical work on natural language decorations of the
classical square and strong JSB hexagon. Linguists have found exactly the
same discrepancy in various closed lexical fields, such as the quantifiers and
the temporal adverbs.12 The correspondence between ℘∪({R∩∆ | R ∈ OG})
and the lexical field of tautology and related metalogical notions shows that
this partial lexicalization pattern arises not only in natural languages, but
even in metalogical jargon.

12Using the familiar A/I/E/O abbreviations for the elements of the square, and writing U

and Y for the hexagon’s uppermost and lowermost elements, the non-lexicalized elements
are exactly O and U. A pragmatic (neo-Gricean) explanation for the non-lexicalization of

the O-element in the square has been developed in [38, 39], and later extended to also
account for the non-lexicalization of the U-element in the JSB hexagon [46, 73].
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Figure 11. (a) A strong Jacoby-Sesmat-Blanché hexagon
for statements of the form R(ϕ,ϕ) (with R ∈ ℘∪(OG)), and
(b) its reformulation using more familiar terminology

More importantly, however, because of this correspondence, the JSB
hexagon in Figure 11(a) can be reformulated as the more familiar JSB hexagon
in Figure 11(b). This metalogical hexagon was first studied by Béziau in [4,
Paragraph 3.2.4] and [5], and later also by Diaconescu [33]. What we have
shown here is that this hexagon can be seen as (a special instance of) a sub-
diagram of the Aristotelian RDH for OG that was introduced in the previous
subsection.

Finally, it should be emphasized that the construction of Aristotelian
diagrams for metalogical notions such as tautology and satisfiability crucially
depends on the assumption that the underlying logical system S be consis-
tent. To illustrate this, we will ignore (non-)contingency, and thus focus on
the Aristotelian square in Figure 12(a) (which can be seen as a subdiagram
of the JSB hexagon in Figure 11). The contrariety, the subcontrariety and
the two subalternations in this square only hold if S is assumed to be con-
sistent. For example, if S is not consistent, i.e. if there are no S-models, then
we simultaneously have S |= ϕ and S |= ¬ϕ, and thus lose the contrariety
between ϕ being a tautology and ϕ being a contradiction. Similar remarks
apply to the other Aristotelian relations in the square (except for the two con-
tradictions). In sum, then, without the assumption that S be consistent, the
metalogical square in Figure 12(a) ‘degenerates’ into the Aristotelian ‘cross’
in Figure 12(b).

4.3. Aristotelian Hexagons for Strong and Weak (Sub)contrariety

Throughout the history of philosophical logic, the relations of contrariety
and subcontrariety have been defined in two related, but subtly different
ways. The resulting notions can be called strong and weak (sub)contrariety.
Working in a logical system S,13 the definitions look as follows:

13 Recall that in Section 2, we distinguished at least three ways of defining the Aris-
totelian relations, viz. Definitions 2.1, 2.2 and 2.3. The distinction between strong and weak
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Figure 12. (a) A classical Aristotelian square for metalog-
ical notions, on the assumption that S be consistent, (b) a
degenerated Aristotelian ‘cross’ for the same metalogical no-
tions, without the assumption that S be consistent

Definition 4.1. Two formulas ϕ,ψ ∈ LS are said to be

strongly S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ,
weakly S-contrary iff S |= ¬(ϕ ∧ ψ),

strongly S-subcontrary iff S 6|= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
weakly S-subcontrary iff S |= ϕ ∨ ψ.

The strong notions of (sub)contrariety are defined in terms of a |=-
condition and a 6|=-condition; the corresponding weak notions keep the former,
but discard the latter. Note that the notions of (sub)contrariety defined in
Sections 2 and 3 are the strong ones (also see Footnote 13). Other uses of the
strong notions can be found in [62, 74, 79]. In contrast, the weak notions of
(sub)contrariety are used in [14, 57, 71]. In recent years, the distinction itself
has become the topic of some discussion. For example, Humberstone [42]
links the strong and weak notions of (sub)contrariety to “traditionalist” and
“modernist” approaches to logic, while Demey and Smessaert [27] show that
the relation between the two notions can be understood in terms of Gricean
pragmatics. Finally, and most relevant for our current purposes, Béziau [4,
Paragraph 4.1.2] has used the strong and weak notions of (sub)contrariety to
define a metalogical decoration for an Aristotelian hexagon.

Because of their definition, the strong notions of contrariety and sub-
contrariety trivially belong to OG (recall Definition 3.1). However, the corre-
sponding weak notions can also be expressed in terms of opposition relations:

(ϕ,ψ) ∈ CD ∪ C iff CD(ϕ,ψ) or C (ϕ,ψ)
iff

(
S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ

)
or(

S |= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ
)

iff S |= ¬(ϕ ∧ ψ)
iff ϕ and ψ are weakly S-contrary,

(sub)contrariety can be made in each of these approaches. We choose to work in the line
of Definition 2.2 here, because the distinction between strong and weak (sub)contrariety

only plays a role at the object-logical level. (At the metalogical level, we exclusively work
with the strong notions of (sub)contrariety throughout this paper.)
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and analogously, (ϕ,ψ) ∈ CD ∪ SC iff ϕ and ψ are weakly S-subcontrary.
Using ‘s’- and ‘w’-subscripts for ‘strong’ and ‘weak’, respectively, we thus
have:

Cs = C , SC s = SC ,
Cw = CD ∪ C , SCw = CD ∪ SC .

The strong and weak notions of (sub)contrariety thus all belong to
℘∪(OG), and hence occur in (subdiagrams of) the Aristotelian RDH that
was constructed in Subsection 4.1. Consider, for example, the strong JSB
hexagon that was already shown in Figure 9(a), but is repeated here (mod-
ulo some rotations and reflections) as Figure 13(a), and reformulated using
the strong/weak terminology as Figure 13(b). This hexagon visualizes the
Aristotelian relations holding between the notions of contradiction, strong
contrariety and weak contrariety (and their negations).14 It can also be used
to shed some new light on the interesting question why an otherwise well-
regulated piece of scientific jargon such as the term contrary can come to be
ambiguous.

The point is that the term contrary is ambiguous in a highly systematic
fashion: it has a weak interpretation (which is compatible with contradiction)
and a strong interpretation (which is incompatible with contradiction). A
strong JSB hexagon such as the one shown in Figure 13(c) has been used in
[73, p. 624] to explain why the natural language expression some is ambiguous
between a unilateral interpretation some1 (which is compatible with all, i.e. at
least one) and a bilateral interpretation some2 (which is incompatible with
all, i.e. some but not all).15 The precise linguistic-cognitive details of this
explanation need not concern us here, but given the striking analogy between
all/some1/some2 and CD/Cw/Cs, it should not be surprising if a broadly
similar account also applies to the latter.

4.4. An Aristotelian Octagon for Strong and Weak (Sub)contrariety

In the previous subsection, we constructed a strong JSB hexagon for strong
and weak contrariety (see Figure 9(a) and Figure 13), and another strong
JSB hexagon for strong and weak subcontrariety (see Figure 9(b) and Foot-
note 14). So far, however, we have not yet considered the interaction between
these two (pairs of) notions. The key insight in studying this interaction is
that strong contrariety and strong subcontrariety are themselves contrary

14 Completely analogously, one can of course also construct a strong JSB hexagon for
strong/weak subcontrariety instead of strong/weak contrariety; see Figure 9(b).
15The distinction between unilateral and bilateral interpretations can also be made for

other quantifiers, such as many and few [80, p. 484ff.], and even for richer, non-closed
lexical fields [73, p. 640ff.]. For example, by replacing all and some by resp. human and

animal in Figure 13(c), one can explain the ambiguity of the word animal, which has a

biological interpretation (which is compatible with human) as well as a more ‘everyday
life’ interpretation (which is incompatible with human). Extensive linguistic research has

shown that systematic ambiguities such as these show up across a wide range of natural
languages.
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Figure 13. (a) A strong JSB hexagon with elements of
℘∪(OG), (b) its reformulation in terms of weak and strong
contrariety, and (c) an analogous strong JSB hexagon for the
unilateral and bilateral interpretations of the natural lan-
guage quantifier some

Figure 14. (a) Aristotelian square with elements of
℘∪(OG), (b) its reformulation in terms of strong
(sub)contrariety

to each other.16 After all, as was already said in Section 2, it holds that
C ∩ SC = ∅ and C ∪ SC 6= B(S) × B(S), i.e. C ∩ SC is the bottom ele-
ment, but C ∪ SC is not the top element of the Boolean algebra ℘∪(OG).
Consequently, strong contrariety and strong subcontrariety can be used to
construct a classical Aristotelian square, which is shown in Figure 14.

In order to integrate the weak notions of (sub)contrariety into this
square, we need to ‘decompose’ its subalternations. First of all, recalling that
weak contrariety is Cw = CD∪C , we can add Cw to the square by decompos-
ing its left subalternation into C → CD ∪C and CD ∪C → CD ∪C ∪NCD .
In order to keep the resulting diagram closed under contradiction, we also
add the ℘∪(OG)-complement of CD ∪ C , viz. SC ∪ NCD , by decomposing
the square’s right subalternation into SC → SC ∪ NCD and SC ∪ NCD →

16To re-emphasize a point that was already made earlier (see Footnote 13): note that in

saying that strong contrariety and strong subcontrariety are themselves contrary, we are
using the notion of contrariety (in italics) at the metalogical level, and are thus making

use of the strong notion of contrariety. To put it more explicitly: strong contrariety and
strong subcontrariety are themselves strongly contrary.
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Figure 15. Two Sherwood-Czezowski hexagons that result
from adding (a) weak contrariety (CD ∪ C) and (b) weak
subcontrariety (CD ∪ SC) to the square in Figure 14

CD∪SC∪NCD . The resulting Aristotelian diagram is a Sherwood-Czeżowski
hexagon, which is shown in Figure 15(a).17 Secondly, recalling that weak sub-
contrariety is SCw = CD∪SC , we can add weak subcontrariety in an entirely
analogous fashion, and will thereby obtain a second Sherwood-Czeżowski
hexagon, which is shown in Figure 15(b).

These two Sherwood-Czeżowski hexagons can be combined into a sin-
gle Aristotelian diagram, viz. a Buridan octagon, which is shown in Fig-
ure 16(a).18 Note that the four relations in the ‘middle’ of this octagon
(i.e. those that do not occur in the square in Figure 14) do not stand in any
Aristotelian relation at all (except for the obvious contradictions between
CD ∪ C and SC ∪ NCD , and between C ∪ NCD and CD ∪ SC ). Consider,
for example, the relations CD ∪ C and C ∪NCD :

• since (CD ∪ C ) ∩ (C ∪ NCD) = C 6= ∅, it follows that CD ∪ C and
C ∪NCD are neither contradictory nor contrary,

• since (CD ∪C )∪ (C ∪NCD) = CD ∪C ∪NCD 6= B(S)×B(S), it follows
that CD ∪ C and C ∪NCD are not subcontrary,
• since (CD ∪ C ) ∩ (C ∪ NCD) = C 6= CD ∪ C , it follows that there is

no subalternation from CD ∪ C to C ∪NCD ,
• since (C ∪NCD) ∩ (CD ∪ C ) = C 6= C ∪NCD , it follows that there is

no subalternation from C ∪NCD to CD ∪ C .

Recalling that the Buridan octagon in Figure 16(a) is a subdiagram of
the Aristotelian RDH for ℘∪(OG) that was described in Subsection 4.1, it
should be noted that this Buridan octagon consists of exactly those relations

17The Sherwood-Czeżowski hexagons are so-called because they were long thought to have
first been studied in the 1950s by Czeżowski [19], but it has recently been argued that they

were already used by the 13th-century logician William of Sherwood [48, 49].
18The Buridan octagons are so-called because they were first studied by the 14th-century
logician John Buridan [40, 67]. Buridan octagons that can be embedded as Aristotelian

subdiagrams inside an Aristotelian RDH, have recently also been called ‘rhombicubes’,

based on the cube-like shape with two rhombic faces of this embedding [30, 32, 78, 80,
81]. The term ‘rhombicube’ was introduced recently, and derives from the fact that if we

consider a Buridan octagon as an Aristotelian subdiagram embedded inside the Aristotelian

RDH, it has a cube-like shape with two rhombic faces.
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Figure 16. (a) Buridan octagon with elements of ℘∪(OG),
(b) reformulation in terms of strong/weak (sub)contrariety

R ∈ ℘∪(OG) that contain either C or SC but not both, i.e. such that C ⊆ R
iff SC 6⊆ R. We can also construct the ‘complement’ of this Buridan octagon,
which contains exactly those relations R ∈ ℘∪(OG) such that C ⊆ R iff
SC ⊆ R. It is well-known that the complement of a Buridan octagon is itself
a strong JSB hexagon [78, 81],19 and hence, this complement is a strong
JSB hexagon inside the Aristotelian RDH for ℘∪(OG), viz. the one shown in
Figure 9(c).

Finally, and perhaps more importantly for our current purposes, the
Buridan octagon in Figure 16(a) also suggests that there is not just one,
but actually two ways in which the strong notion of (sub)contrariety can be
weakened. Recall that the strong notion of contrariety (Cs = C ) is defined in
terms of a |=-condition and a 6|=-condition. As was discussed in the previous
subsection, several authors have proposed a weaker version of contrariety by
dropping the 6|=-condition, thereby obtaining Cw = CD ∪ C . The Buridan
octagon suggests, however, that there is also an alternative notion of weak
contrariety, viz. C ∗w = C ∪NCD . It is easy to see that this alternative notion
of weak contrariety is ‘dual’ to the original one, in the sense that it can be
obtained from strong contrariety by dropping the |=-condition instead of the
6|=-condition. Looking again at Figure 16(a), we cannot distinguish between
the two weak notions of contrariety, since CD ∪ C and C ∪ NCD stand in
exactly the same Aristotelian relations to the relations of the original square
(i.e. C, SC, CD ∪ C ∪NCD and CD ∪ SC ∪NCD):

• both are entailed by strong contrariety (i.e. C ),
• both entail the absence of strong subcontrariety (i.e. CD ∪ C ∪NCD),
• both are contrary to strong subcontrariety (i.e. SC ),

19There are 8 relations R ∈ ℘∪(OG) such that C ⊆ R iff SC ⊆ R, but two of them are
℘∪(OG)’s bottom element ∅ (for which it holds that C 6⊆ ∅ and SC 6⊆ ∅) and its top

element B(S)×B(S) (for which it holds that C ⊆ B(S)×B(S) and SC ⊆ B(S)×B(S)), and
these do not occur inside any Aristotelian diagram (recall Footnote 9).
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Figure 17. (a) Béziau’s partially correct hexagon, (b) a
plausible reformulation in terms of elements of ℘∪(OG), and
(c) the corrected version

• and finally, both are subcontrary to the absence of strong contrariety
(i.e. CD ∪ SC ∪NCD).

Similar remarks can be made, of course, for subcontrariety: in addition to
strong subcontrariety (SC s = SC ) and the original notion of weak subcon-
trariety (SCw = CD ∪ SC ), we also get a new notion of weak subcontrariety
(SC ∗w = SC∪NCD) that is ‘dual’ to the original one. Using this new terminol-
ogy, the relations in the Buridan octagon in Figure 16(a) can be reformulated
more evocatively as in Figure 16(b).

4.5. Correcting Béziau’s Hexagon for Strong and Weak (Sub)contrariety

In the previous two subsections, we have constructed Aristotelian diagrams
for the strong and weak notions of contrariety, and their interaction. In
each of these diagrams, the relation of contradiction played an important
role, in the sense that CD is a subset of exactly half of the relations at
its vertices (for example, in Buridan octagon in Figure 16, it holds that
CD ⊆ Cw,SCw,not Cs,not Cs). However, none of these diagrams contains
CD ‘by itself’. Béziau [4, Paragraph 4.1.2] has studied the interaction between
CD and strong/weak (subcontrariety), and claims that this interaction can
be visualized by means of a JSB hexagon [4, Figure 40], which is shown here
as Figure 17(a). Note that Béziau [4, p. 30] explicitly defines the notions of
strong (sub)contrariety and weak (sub)contrariety, and his definition corre-
sponds exactly to our Definition 4.1. However, Béziau does not state explicitly
how he understands the relation labeled as ‘not CD ’ in his hexagon; we will
return to this missing definition very soon (see Footnote 21).

Upon closer examination, Béziau’s hexagon turns out to be only par-
tially correct; more specifically, we find:

• the three contrarieties and the six subalternations are correct,
• the three contradictions are incorrect,

for example, Cs and SCw are said to be contradictory, but since Cs ∩
SCw = C ∩ (CD ∪ SC ) = ∅ and Cs ∪ SCw = C ∪ (CD ∪ SC ) =
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CD ∪ C ∪ SC 6= B(S) × B(S), these relations are contrary, rather than
contradictory,
• the three subcontrarieties are incorrect,

for example, Cw and SCw are said to be subcontrary, but since Cw ∪
SCw = (CD ∪ C ) ∪ (CD ∪ SC ) = CD ∪ C ∪ SC 6= B(S) × B(S), these
relations are not subcontrary; in fact, it can be shown that they do not
stand in any Aristotelian relation at all.

The contradictions in Béziau’s hexagon in Figure 17(a–b) should thus
be replaced with contrarieties, and similarly, the subcontrarieties should be
deleted (and not replaced with any Aristotelian relation at all). Figure 17(c)
shows the Aristotelian diagram that is the result of making these corrections
to Béziau’s original hexagon. It should be emphasized that this corrected
hexagon is highly exotic, since it does not obey the nearly universally accepted
principle that Aristotelian diagrams should consist of pairs of contradictory
formulas.20

Based on the observations made above, a uniform explanation can be
given for the errors in the hexagon in Figure 17(a–b): Béziau seems to have
ignored the relation NCD . After all, the incorrect contradictions and subcon-
trarieties are based on the assumption that the universal relation over B(S)
is CD ∪ C ∪ SC , whereas actually it is CD ∪ C ∪ SC ∪ NCD .21 Putting it
in less abstract terms, Béziau seems to have ignored the fact that there exist
pairs of formulas—e.g. the pairs (p, q) and (p, p) in CPL—that are not con-
tradictory, not contrary, and not subcontrary to each other (all we can say is
that NCDCPL(p, q) and NCDCPL(p, p)).22

A correct Aristotelian diagram for the interaction between CD and
strong/weak subcontrariety can be obtained by considering the complement-
closure of Béziau’s hexagon, i.e. the Aristotelian diagram that is obtained
by adding the complements of all relations that occur in the original dia-
gram.23 The resulting diagram is a dodecagon, which is shown in Figure 18.

20The systematic study of such non-standard Aristotelian diagrams is still in its infancy;

some preliminary results can be found in [60, 61].
21 Whether this explanation also applies to the contradiction between CD and ‘not CD ’,
depends on how the latter relation is interpreted (recall that Béziau does not explicitly say
what he means by ‘not CD ’). If ‘not CD ’ is interpreted as C ∪ SC ∪ NCD , then CD and
‘not CD ’ are indeed contradictory to each other, and this relation in Béziau’s hexagon in
Figure 17(a) is correct after all. However, given the uniform explanation for the two other
contradictions and the three subcontrarieties, it seems far more likely that Béziau means
‘not CD ’ to be interpreted as C∪SC —this interpretation is also assumed in Figure 17(b)—
, and in that case, it is incorrect to say that CD and ‘not CD ’ are contradictory to each
other (since CD ∪ (C ∪ SC ) 6= B(S)× B(S)).
22Using Pellissier’s [64] terminology, yet another reformulation might look as follows:
Béziau takes the hexagon in Figure 17 to be a strong JSB hexagon, but actually it is a weak

JSB hexagon. However, this reformulation has to be taken with a grain of salt: Béziau’s

hexagon is incorrect in its contradictions and subcontrarieties, so it is not a proper JSB
hexagon to begin with, and thus the question whether it is a strong or a weak one does

not even arise, strictly speaking.
23For most Aristotelian diagrams, this operation does not make much sense, since they are
already closed under negation, and are thus their own complement-closure.
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Figure 18. (a) The complement-closure of
Béziau’s hexagon, (b) its reformulation in terms of
strong/weak/weak* (sub)contrariety

This dodecagon contains all the other Aristotelian diagrams shown in Subsec-
tions 4.3–4.5 as subdiagrams. Comparing this dodecagon to the Aristotelian
RDH that was described in Subsection 4.1, we see that it lacks only two rela-
tions, namely precisely those that were originally forgotten by Béziau: NCD
and its contradictory, CD ∪ C ∪ SC .

One can also adopt an alternative perspective on the relationship be-
tween Béziau’s hexagon in Figure 17(a) and the Aristotelian RDH for OG
in Figure 8(b). Recall that ℘∪(OG) consists of 16 relations, which are of the
form

⋃
X , for X ⊆ OG. Now, if NCD = ∅, then these 16 relations collapse

pairwise into 8 relations; for example, CD ∪NCD = CD ∪∅ = CD . The table
below describes all these collapses:

RDH collapse collapse RDH

CD → CD C ∪ SC ← C ∪ SC ∪NCD
CD ∪NCD → ← C ∪ SC
C → C CD ∪ SC ← CD ∪ SC ∪NCD
C ∪NCD → ← CD ∪ SC
SC → SC CD ∪ C ← CD ∪ C ∪NCD
SC ∪NCD → ← CD ∪ C
NCD → [∅] [CD ∪ C ∪ SC ] ← CD ∪ C ∪ SC
[∅] → ← [CD ∪ C ∪ SC ∪NCD ]

In this table, square brackets indicate that a relation is the top- or bot-
tom element in its respective Boolean algebra, and is thus not included in
Aristotelian diagrams (recall Footnote 9). We thus see that the 16 − 2 = 14
relations of the Aristotelian RDH for OG pairwise collapse into the 16

2 −2 = 6
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relations of Béziau’s hexagon.24 In other words, Béziau’s hexagon is correct
after all (and plays a role analogous to our RDH), if only we are prepared to
make the assumption that NCD = ∅. This leads to a more charitable interpre-
tation of Béziau’s hexagon, since the only substantial criticism that can now
be made is that he should have stated more explicitly that he was working
under the assumption that NCD = ∅. The problem with this interpretation,
however, is that the assumption that NCD = ∅ is itself extremely unrealistic.
For example, in any consistent logical system S, if ϕ is S-contingent, it holds
that NCDS(ϕ,ϕ), and thus definitely NCDS 6= ∅. In all reasonable logical
systems, it will thus be the case that NCD 6= ∅, which brings us back to the
original conclusion that Béziau’s hexagon in Figure 17 is partially incorrect,
and should be replaced by the dodecagon in Figure 18 or even the full RDH
in Figure 8(b).

We will finish this section with a more general remark. In recent years,
Béziau has studied at least two metalogical decorations of Aristotelian dia-
grams, viz. a JSB hexagon for tautology, satisfiability and related notions—
see Figure 11(b)—and a JSB hexagon for the interaction between contra-
diction and strong and weak notions of (sub)contrariety—see Figure 17(a).
Until now, these metalogical hexagons appeared to be two ‘independent’
Aristotelian diagrams. In this section, however, we have shown that these
hexagons are intimately related to each other, since both of them can be seen
as (special instances of) subdiagrams of one and the same metalogical dia-
gram, viz. the Aristotelian RDH for OG that was described in Subsection 4.1.

5. Aristotelian Diagrams for the Implication Relations

In this section we continue our study of metalogical decorations for Aris-
totelian diagrams, by considering various Aristotelian diagrams for the im-
plication geometry (IG). Subsection 5.1 shows how all the diagrams for OG
that were studied in Section 4 can systematically be turned into diagrams
for IG. Next, Subsection 5.2 explores the connection between Aristotelian
diagrams for IG and Aristotelian diagrams for abstract ordering relations.

5.1. From Opposition to Implication Decorations of Aristotelian Diagrams

We have argued above that since OG is a partition of B(S)×B(S)—i.e. every
pair of formulas stands in exactly one opposition relation—, the elements
of ℘∪(OG) can be used to decorate an Aristotelian RDH. Furthermore, all
Aristotelian diagrams that were discussed in Section 4 can be seen as sub-
diagrams of this Aristotelian RDH. Now, one the one hand, OG and IG are
closely related to each other (recall Lemma 3.4), and on the other hand IG is
also a partition of B(S)× B(S)—i.e. every pair of formulas stands in exactly
one implication relation (recall Lemma 3.5). Consequently, it should come

24Furthermore, note that on the assumption that NCD = ∅, Béziau’s hexagon is a strong
JSB hexagon. It is still conceptually very different, however, from the six strong JSB

hexagons inside the Aristotelian RDH for OG that were listed in Figure 9, since the latter

six do not depend on the assumption that NCD = ∅.
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as no surprise that the elements of ℘∪(IG) = {
⋃
X | X ⊆ IG} can also

be used to decorate an Aristotelian RDH, and furthermore, all the insights
and Aristotelian diagrams for ℘∪(OG) that were discussed in Section 4 can
straightforwardly be transposed to ℘∪(IG).

We will now briefly describe some of these Aristotelian diagrams for
IG. First of all, in analogy to the weak JSB hexagon of opposition relations
that was shown in Figure 10(a), we will consider the weak JSB hexagon of
implication relations that is shown in Figure 19(a). In the light of Lemma 3.4,
however, we will not fill in (ϕ,ϕ) in these relations, but rather (ϕ,¬ϕ); the
resulting metalogical JSB hexagon is shown in Figure 19(b).25 In terms of
relations, this means that we are intersecting each relation R ∈ ℘∪(IG) with
the relation ∇ := {([ϕ], [¬ϕ]) | ϕ ∈ LS} on B(S), and are thus no longer
working in the Boolean algebra ℘∪(IG), but rather in the Boolean algebra
℘∪({R ∩ ∇ | R ∈ IG}) = {(

⋃
X ) ∩ ∇ | X ⊆ IG}.26 Assuming that the

underlying logical system S is consistent, we find that

(ϕ,¬ϕ) ∈ BI iff impossible,
(ϕ,¬ϕ) ∈ LI iff ϕ is a contradiction,
(ϕ,¬ϕ) ∈ RI iff ϕ is a tautology,
(ϕ,¬ϕ) ∈ NI iff ϕ is a contingency,
(ϕ,¬ϕ) ∈ BI ∪ RI ∪NI iff ϕ is satisfiable,
(ϕ,¬ϕ) ∈ BI ∪ LI ∪NI iff ϕ is not a tautology,
(ϕ,¬ϕ) ∈ BI ∪ LI ∪ RI iff ϕ is not a contingency.

The metalogical hexagon in Figure 19(b) can thus be reformulated as the
hexagon for tautology and related metalogical notions that was already shown
in Figure 11(b). This well-known hexagon [4, 5, 33] can thus not only be seen
as (a special instance) of a subdiagram of the Aristotelian RDH for OG (as
was shown in Subsection 4.2), but also as (a special instance) of a subdiagram
of the Aristotelian RDH for IG.

Another insight that can fruitfully be transposed from OG to IG is
the distinction between strong and weak opposition relations. The notion of
left-implication (LI ) that was defined in Definition 3.2 can be called strong
(notation: LI s), since it is defined in terms of a |=- and a 6|=-condition. This
definition can be weakened in two ways that are ‘dual’ to each other: LI w

drops the 6|=-condition, while LI ∗w drops the |=-condition.27 Obviously, an

25It should be clear that we could also choose to systematically fill in (¬ϕ,ϕ) instead of
(ϕ,¬ϕ): by Lemma 3.4 the resulting JSB hexagon would be identical to the one shown in
Figure 19(b), modulo symmetry over the hexagon’s vertical axis—for example, RI (¬ϕ,ϕ)
iff LI (ϕ,¬ϕ).
26Recall that in Subsection 4.2, every relation R ∈ ℘∪(OG) was intersected with the
identity relation ∆ = {([ϕ], [ϕ]) | ϕ ∈ LS}. It is easy to see that ∇ = CD ∈ OG and

∆ = BI ∈ IG. Furthermore, in [79] it is shown that CD and BI are the most informative

relations of OG and IG, respectively. The operations described here and in Subsection 4.2
are thus entirely analogous, since both of them involve intersecting the relations of one

geometry with the most informative relation of the other geometry.
27The notion of entailment in contemporary logic is typically assumed to be reflexive
(ϕ |= ϕ), and thus does not correspond to LI s, but rather to LIw.
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Figure 19. (a) A weak Jacoby-Sesmat-Blanché hexagon
decorated with elements of ℘∪(IG), (b) the result of filling
in (ϕ,¬ϕ)

Figure 20. (a) Buridan octagon with elements of ℘∪(IG),
(b) reformulation in terms of strong/weak left- and right-
implication

analogous distinction can be made for right-implication. All these relations
are elements of ℘∪(IG):

LI s = LI , RI s = RI ,
LI w = BI ∪ LI , RI w = BI ∪ RI ,
LI ∗w = LI ∪ NI , RI ∗w = RI ∪ NI .

Together, these strong and weak notions of left- and right-implication can be
used to decorate a Buridan octagon, which is shown in Figure 20.

5.2. Aristotelian Diagrams for Ordering Relations

In this subsection we will explore the relationship between the Aristotelian
RDH for ℘∪(IG) and Aristotelian diagrams for abstract ordering relations.
The latter were among those that have sparked a renewed interested in Aris-
totelian diagrams since the middle of the 20th century [13], and have recently
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also been studied by Béziau [6]. Let’s start by briefly recalling the definitions
of partial and total ordering relations:

Definition 5.1. A binary relation ≤ on a set S is said to be a partial order iff
it satisfies the following conditions:

• for all x ∈ S: x ≤ x, (reflexivity)
• for all x, y, z ∈ S: if x ≤ y and y ≤ z, then x ≤ z, (transitivity)
• for all x, y ∈ S: if x ≤ y and y ≤ x, then x = y. (antisymmetry)

Furthermore, ≤ is said to be a total order iff it satisfies all the conditions
mentioned above, and additionally also the following one:28

• for all x, y ∈ S: x ≤ y or y ≤ x. (totality)

Finally, if ≤ is a partial or a total order, then the corresponding strict relation
< is defined as follows: x < y :⇔ (x ≤ y and x 6= y).29

Consider a total order ≤ on a set S. It follows straightforwardly from
Definition 5.1 that the relations ≤,≥, <,>,=, 6= ∈ ℘(S × S) can be used
to decorate a JSB hexagon, which is shown in Figure 21(a). For example,
< and > are contrary to each other, since there are no x, y ∈ S such that
simultaneously x < y and x > y, but there are x, y ∈ S such that neither x <
y nor x > y (for example, take (x, y) := (x, x), for any x ∈ S). Furthermore,
the JSB hexagon for total orders is strong, since the union of the contrary
relations <, > and = is the universal relation S × S (i.e. the top element of
the Boolean algebra ℘(S × S)): it follows straightforwardly from the totality
condition that for all x, y ∈ S: x < y or x > y or x = y. The fact that
a total order can be used to decorate a strong JSB hexagon has long been
known—in fact, it was already known in the 1950s by Sesmat [70] and Blanché
[11, 12, 13], two of the authors after which the JSB hexagon was originally
named (recall Footnote 10).

If the relation ≤ is not assumed to be a total order, but merely a partial
order, the Aristotelian hexagon in Figure 21(a) undergoes some changes:

• two of the three contradictions change into contrarieties,
for example, < and ≥ are contraries, since < ∩ ≥ = ∅ (i.e. there are no
x, y ∈ S such that simultaneously x < y and x ≥ y), and < ∪ ≥ 6= S×S
(i.e. there are x, y ∈ S such that neither x < y nor x ≥ y)
• one of the three subcontrarieties is lost

(and not replaced with any Aristotelian relation at all),
viz. ≤ and ≥ are no longer subcontrary to each other, since ≤ ∪ ≥
6= S × S (i.e. there are x, y ∈ S such that neither x ≤ y nor x ≥ y),
• the three contrarieties and the six subalternations remain unchanged.

28Note that if the totality axiom is added, the reflexivity axiom becomes redundant, since
every relation that satisfies totality can easily be shown to also satisfy reflexivity.
29In case ≤ is a total order, the corresponding strict relation can also be defined as follows:
x < y :⇔ not(x ≥ y). However, this alternative definition cannot be used if ≤ is only a

partial order: if ≤ is a total order, then not(x ≥ y) is equivalent to (x ≤ y and x 6= y), but
if ≤ is only a partial order, then these two statements are not equivalent to each other.
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Figure 21. Aristotelian hexagon for (a) a total order, and
(b) a partial order

The resulting Aristotelian hexagon is shown in Figure 21(b), and was first
studied in [60, Figure 59]. We would now like to point out a striking analogy
between two conceptual processes that have been described in this section
and the previous one:

• in Subsection 4.5: correcting Béziau’s hexagon,
i.e. from Figure 17(a–b) to 17(c).
• just now: moving from a total order to a partial order,

i.e. from Figure 21(a) to 21(b),

These two cases arise because of essentially one and the same reason. As
was argued in Subsection 4.5, the first case shows that one cannot ignore
the opposition relation of non-contradiction, i.e. one cannot assume (like
Béziau seemed to do) that NCD = ∅. Completely analogously, the second
case shows that in going from complete to partial orders (and thus drop-
ping the totality axiom), one cannot ignore the relation of incomparabil-
ity # := {(x, y) ∈ S × S | not(x ≤ y) and not(x ≥ y)} = {(x, y) ∈
S × S | not(x = y) and not(x < y) and not(x > y)}, i.e. one cannot as-
sume that # = ∅. From this perspective, it is particularly ironic that Béziau
explicitly states that his hexagon for contradiction and strong and weak
(sub)contrariety in Figure 17(a) is “very similar to the ones presented by
Sesmat and Blanché relating <,>,=,≤,≥, 6=” [4, p. 30], and thus compares
it to the hexagon for total orders in Figure 21(a), although it is actually much
more similar to the hexagon for partial orders in Figure 21(b).

The Boolean closure of the hexagon for partial orders in Figure 21(b)
is a Boolean algebra consisting of 16 elements, which—after leaving out the
empty and universal relations (recall Footnote 9)—can be used to decorate
an Aristotelian RDH. (A geometrical variant of this RDH can already be
found in [60, Figure 59].) The atoms of this Boolean algebra are the relations
=, <, > and #, and thus the Boolean algebra itself can be described as
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Figure 22. Aristotelian rhombic dodecahedron for partial orderings

℘∪({=, <,>,#}) = {
⋃
X | X ⊆ {=, <,>,#}}; see Figure 22.30 All relations

in the hexagon for partial orders in Figure 21(b) (and its Boolean closure) can
thus be written as

⋃
X for some X ⊆ {=, <,>,#}; for example, the relations

≤, ≥ and 6= correspond to = ∪ <, = ∪ > and < ∪ > ∪ #, respectively.
As a consequence, the hexagon for partial orders in Figure 21(b) can be
reformulated as in Figure 23(a).31

The Aristotelian hexagon in Figure 23(a) can be seen as a subdiagram of
the Aristotelian RDH for partial orders that was shown in Figure 22. Needless
to say, the latter also has many other subdiagrams, which can be exhaustively
studied. For now, we will mention only two such subdiagrams: the strong JSB
hexagon in Figure 23(b) and the ‘contrariety square’ in Figure 23(c), which
are reformulations in terms of ℘∪({=, <,>,#}) of Aristotelian diagrams for
partial orders that were originally studied by Béziau [6, Figures 3 and 9].

30Note that we can move back from partial to total orderings by imposing the totality
axiom, which corresponds to assuming that # = ∅. This assumption entails that the 16

relations of ℘∪({=, <,>,#}) collapse pairwise into 8 relations (this is analogous to the
pairwise collapse of ℘∪(OG) that is described toward the end of Subsection 4.5, where it
is assumed that NCD = ∅). Ignoring the empty and universal relation, we thus find that

the 16− 2 = 14 relations of the RDH for partial orders in Figure 22 pairwise collapse into
the 16

2
− 2 = 6 relations of the strong JSB hexagon for linear orders in Figure 21(a).

31 We are now also in a position to explain why the hexagons in Figure 17(c) and 21(b) do

not entirely consist of the same Aristotelian relations, despite the fundamental underlying
analogy that was described earlier (ignoring NCD vs. ignoring #). The differences between

both diagrams arise from the fact that the hexagon’s top element in Figure 17(c) is C ∪SC ,
whereas in Figure 21(b) it is < ∪ > ∪ #. To obtain a fully perfect analogy, we would need
to put C ∪SC ∪NCD at the top of the hexagon in Figure 17(c), or, alternatively, < ∪ > at

the top of the hexagon in Figure 21(b). However, the first option is not the most plausible
interpretation of Béziau’s use of ‘not CD ’ (recall Footnote 21), while the second one does
not match our intuitive understanding of 6= (take, for example, the partial order of set
inclusion, and consider the sets A = {1, 2} and B = {2, 3}: even though neither A ⊂ B
nor A ⊃ B, we still want to be able to say that A 6= B).



34 Lorenz Demey and Hans Smessaert

Figure 23. Three Aristotelian subdiagrams of the Aris-
totelian RDH for partial orders shown in Figure 22

Concrete instances of the Aristotelian RDH for partial orders in Fig-
ure 22 (or any of its subdiagrams) can be obtained by ‘filling in’ a concrete
partial order. A well-known example of a partial ordering relation is set inclu-
sion, and thus we immediately obtain an Aristotelian RDH for set inclusion
[76]. Another example, which is more relevant for our current purposes, is
based on the fact that S-entailment is a partial order over the Lindenbaum-
Tarski algebra B(S) of a given logical system S, and hence, we immediately
obtain an Aristotelian RDH for entailment. This diagram is exactly the RDH
for the implication geometry IG that was described in Subsection 5.1; in
particular, the abstract relations =, <, > and # are instantiated exactly
as the implication relations BI , LI , RI and NI , respectively, and hence
℘∪({=, <,>,#}) = ℘∪({BI ,LI ,RI ,NI }) = ℘∪(IG). This shows that the
Aristotelian RDH for IG is not only related to the RDH for OG, as was
shown in Subsection 5.1, but is also a specific instance of the RDH for partial
orders.

6. Aristotelian Diagrams for Aristotelian and Duality Relations

In this section we conclude our study of metalogical decorations for Aris-
totelian diagrams. Subsection 6.1 studies some Aristotelian diagrams that
are decorated with the Aristotelian relations themselves, while Subsection 6.2
studies some Aristotelian diagrams for the duality relations.

6.1. Aristotelian Diagrams for the Aristotelian Relations

Since the Aristotelian geometry is hybrid between the opposition and impli-
cation geometries (AG ⊆ OG ∪ IG), many of the diagrams that were studied
in Sections 4 and 5 can be viewed not only as Aristotelian diagrams for OG or
IG, but also as Aristotelian diagrams for AG itself. For example, since con-
trariety and subcontrariety are not only opposition relations, but also Aris-
totelian relations, the decoration of the Buridan octagon for strong and weak
(sub)contrariety in Figure 16 can be seen as consisting of opposition relations,
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but equally well as consisting of Aristotelian relations. Still, the Aristotelian
diagrams in Sections 4 and 5 do not fully do justice to the hybrid nature of
AG, since none of them has a decoration that simultaneously contains op-
position and implication relations. In this subsection, we will therefore focus
exactly on Aristotelian diagrams with decorations containing both opposition
and implication relations.

The Aristotelian diagrams that were constructed in Sections 4 and 5
are all based on the fact that OG and IG are partitions of B(S) × B(S) (re-
call Lemma 3.5). It is well-known, however, that the Aristotelian geometry
is not a partition—indeed, this was one of the main motivations for intro-
ducing OG and IG in [79]—, and thus we cannot straightforwardly apply the
same technique as before. In particular, it does not make sense to introduce
℘∪(AG) := {

⋃
X | X ⊆ AG}, since the latter is not a Boolean algebra whose

atoms are the Aristotelian relations.
Since the Aristotelian geometry is hybrid between the opposition and

implication geometries (AG ⊆ OG ∪ IG), it makes sense to look at the meet
(i.e. the coarsest common refinement) of the partitions OG and IG, which is
defined as follows:

OG ∧ IG := {R ∩ S | R ∈ OG, S ∈ IG, R ∩ S 6= ∅}.
Since the partition OG∧IG is a refinement of OG as well as IG, it follows that
every Aristotelian relation can be seen as an element of the Boolean closure
℘∪(OG ∧ IG) [31]. Note, however, that there are |OG| × |IG| = 4 × 4 = 16
relations of the form R ∩ S for R ∈ OG and S ∈ IG, and only one of them
is irrelevant (it can easily be shown that CD ∩ BI = ∅ if the underlying
logical system S is consistent). In other words, we have |OG ∧ IG| = 15, and
thus ℘∪(OG ∧ IG) contains 215 = 32768 relations in total, which renders it
practically infeasible to systematically study Aristotelian diagrams for AG
by viewing them as subdiagrams of some larger, Boolean closed Aristotelian
diagram (in contrast to Sections 4 and 5, where all Aristotelian diagrams for
OG and IG were seen as subdiagrams of the Aristotelian RDH for OG and
the Aristotelian RDH for IG, respectively).

We will therefore proceed in a more local fashion, and study some inter-
esting Aristotelian diagrams for AG without viewing them as subdiagrams
of some larger, Boolean closed Aristotelian diagram. Furthermore, many of
the Aristotelian diagrams that will be studied in this subsection do not hold
in full generality, i.e. for all pairs of formulas (ϕ,ψ), but only if we impose
certain additional conditions on the formulas, such as satisfiability or contin-
gency.32 For each diagram that is studied in this subsection, we will therefore
explicitly state the additional conditions which it depends on.

The first Aristotelian diagram that we will study contains both weak
opposition and weak implication relations. Löbner [52, p. 55] defines the
following four relations:

32Formally, this means that we intersect every relation in ℘∪(OG ∧ IG) with ∆A,B :=
{(ϕ,ψ) | ϕ satifies condition A,ψ satisfies condition B}, and do not work with a partition
of B(S)× B(S), but rather of (B(S)× B(S)) ∩∆A,B = ∆A,B .
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Figure 24. Löbner’s relations as decorations of (a) an Aris-
totelian cross (no constraints) and (b) a classical Aristotelian
square (constraint: satisfiability of the first argument)

• ϕ and ψ are compatible iff S 6|= ¬(ϕ ∧ ψ),
• ϕ implies ψ iff S |= ϕ→ ψ,
• ϕ is contrary to ψ iff S |= ¬(ϕ ∧ ψ),
• ϕ does not imply ψ iff S 6|= ϕ→ ψ.

These four relations correspond exactly to SC ∪NCD , BI ∪LI , CD ∪C and
RI ∪ NI , respectively. Löbner thus exclusively works with weak opposition
and implication relations: using notation from Sections 4 and 5, his relations
are SC ∗w, LI w, Cw and RI ∗w, respectively.

Since OG and IG are partitions of B(S)×B(S) (recall Lemma 3.5), it is
trivial to check that CD ∪C and SC ∪NCD are contradictory, and also that
BI ∪ LI and RI ∪ NI are contradictory. If we do not impose any additional
constraints, then these two contradictions are the only Aristotelian relations
that obtain between Löbner’s four relations. For example, CD∪C and BI∪LI
do not stand in any Aristotelian relation at all:

• (p ∧ ¬p, p) ∈ CD ∪ C and (p ∧ ¬p, p) ∈ BI ∪ LI ,
so (CD ∪ C ) ∩ (BI ∪ LI ) 6= ∅,
so CD ∪ C and BI ∪ LI are neither contradictory nor contrary,

• (p, q) /∈ CD ∪ C and (p, q) /∈ BI ∪ LI ,
so (CD ∪ C ) ∪ (BI ∪ LI ) 6= B(CPL)× B(CPL),
so CD ∪ C and BI ∪ LI are not subcontrary,

• (p,¬p) /∈ (CD ∪ C ) ∩ (BI ∪ LI ) and (p,¬p) ∈ CD ∪ C ,
so (CD ∪ C ) ∩ (BI ∪ LI ) 6= CD ∪ C ,
so there is no subalternation from CD ∪ C to BI ∪ LI ,

• (p, p) /∈ (CD ∪ C ) ∩ (BI ∪ LI ) and (p, p) ∈ BI ∪ LI ,
so (CD ∪ C ) ∩ (BI ∪ LI ) 6= BI ∪ LI ,
so there is no subalternation from BI ∪ LI to CD ∪ C .

Without imposing any additional constraints, Löbner’s relations thus con-
stitute a ‘degenerated’ Aristotelian square (or ‘cross’), which is shown in
Figure 24(a).

If we make the additional assumption that the relations’ first argument
is satisfiable, however, the situation changes quite drastically. For example,
based on this assumption, it can be shown that CD ∪ C and BI ∪ LI are
contrary to each other: it is still trivially the case that (CD ∪C )∪ (BI ∪LI )
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is not the universal relation over B(S), and to see that (CD∪C )∩(BI ∪LI ) is
empty, note that (ϕ,ψ) ∈ (CD∪C )∩(BI ∪LI ) entails that S |= ¬(ϕ∧ψ) and
S |= ϕ → ψ, and thus S |= ¬ϕ, which contradicts our assumption that ϕ is
satisfiable. In exactly the same way, it can be shown that SC ∪NCD and RI ∪
NI are subcontrary to each other, and that there are subalternations from
BI ∪LI to SC ∪NCD and from CD ∪C to RI ∪NI . On the assumption that
their first argument is satisfiable, Löbner’s relations thus end up constituting
a classical Aristotelian square, which is shown in Figure 24(b). Although
Löbner himself did not explicitly draw this metalogical square, he recognized
that his four relations “constitute another Aristotelian square too, implication
[BI ∪ LI ] implying compatibility [SC ∪NCD ] and so on” [52, p. 55].

In Seuren [72, p. 11] we find another Aristotelian diagram that con-
tains both opposition and implication relations. Seuren considers the same
four relations as Löbner (although he calls them differently), and adds two
more, viz. ‘strict compatibility’ and its complement. As indicated by Seuren
himself [72, p. 3], the relation of strict compatibility is better known as log-
ical independence or unconnectedness [79, Footnote 43],33 and is defined as
follows:

ϕ and ψ are unconnected iff S 6|= ¬(ϕ ∧ ψ) and S 6|= ϕ ∨ ψ and
S 6|= ϕ→ ψ and S 6|= ψ → ϕ.

It should be clear that Seuren’s notion of strict compatibility can be repre-
sented as NCD ∩ NI . Making use of Lemma 3.5, the complement of strict
compatibility can be represented as follows:

not(NCD ∩NI ) = not(NCD)∪ not(NI ) = (CD ∪C ∪ SC )∪ (BI ∪ LI ∪RI ).

Strict compatibility and its complement are (by definition) contradictory to
each other. Furthermore, even without making any additional assumptions
about the relations’ arguments, it can easily be shown that these two new
relations enter into Aristotelian relations with Löbner’s original four; for ex-
ample, NCD ∩ NI is contrary to CD ∪ C and to BI ∪ LI , and stands in
subalternation to SC ∪ NCD and to RI ∪ NI . In total, Seuren’s relations
thus constitute the Aristotelian hexagon shown in Figure 25(a); this type of
hexagon is relatively unknown, but has recently been studied and called an
‘unconnected-4’ hexagon, since it contains exactly four pairs of vertices that
do not stand in any Aristotelian relation at all [32, 78, 81].

If we do make the additional assumption that the relations’ first argu-
ment is satisfiable, then the cross constituted by Löbner’s four relations again
turns into a classical Aristotelian square (recall Figure 24), and the hexagon
as a whole turns into a more familiar JSB hexagon, as shown in Figure 25(b),
and originally in [72, Figure 4]. It should be noted that this is a weak JSB
hexagon, since (CD ∪ C ) ∪ (BI ∪ LI ) ∪ (NCD ∩NI ) 6= B(S)× B(S).34

33See Footnote 2 of this paper for the relation between unconnectedness and the informa-

tivity account of the Aristotelian relations that is presented in [79].
34For example, (p∨¬p, p) ∈ SC∩RI , and hence (p∨¬p, p) /∈ CD∪C and (p∨¬p, p) /∈ BI∪LI
and (p ∨ ¬p, p) /∈ NCD ∩NI .
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Figure 25. Seuren’s relations as decorations of (a) an
‘unconnected-4’ hexagon (no constraints) and (b) a weak
JSB hexagon (constraint: satisfiability of the first argument)

Figure 26. (a) Variant of Löbner’s square (constraint: the
first argument is not a tautology), (b) Aristotelian octagon
(constraint: contingency of both arguments)

Löbner’s squares in Figure 24 are decorated with weak relations Cw and
LI w and the ‘dually’ weak relations SC ∗w and RI ∗w. A variant of Löbner’s
square can be obtained by changing which relations are ‘ordinarily weak’ and
which ones are ‘dually weak’, i.e. by considering the relations C ∗w = C ∪NCD ,
LI ∗w = LI ∪NI, SCw = CD ∪ SC and RI w = BI ∪ RI . If we do not make
any additional assumptions, these four new relations again constitute a de-
generated Aristotelian square, just like Löbner’s four original ones (see Fig-
ure 24(a)). However, if we make the additional assumption that the relations’
first argument is not a tautology,35 then they turn out to constitute a classical
Aristotelian square, which is shown in Figure 26(a).

35Note the close connection between the conditions that are needed to turn the degenerated
square into a classical square: for Löbner’s original four relations, the condition is that the

first argument is satisfiable (i.e. S 6|= ¬ϕ), for the four new relations, the condition is that
the first argument is not a tautology (i.e. S 6|= ϕ).
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Löbner’s original square in Figure 24(b) and its variant in Figure 26(a)
can be combined with each other, thereby yielding an Aristotelian octagon.
To ensure that both squares are classical (i.e. not degenerated), we have to
assume that the relations’ first argument is satisfiable and not a tautology,
i.e. that it is contingent. If we additionally assume that the relations’ second
argument is also contingent, then the relations of the two squares enter into
further Aristotelian relations with each other; for example, it can be shown
that CD ∪C (from Löbner’s original square) and BI ∪RI (from the variant
to Löbner’s square) are contrary to each other,36 and also that BI ∪LI (from
Löbner’s original square) and CD∪SC (from the variant) are contrary to each
other.37 The resulting metalogical octagon is shown in Figure 26(b).38 This
type of Aristotelian octagon has hitherto not been studied in any systematic
way, but it can be found in [23, 37, 45, 47], where it receives an object-logical
decoration consisting of categorical statements from syllogistics. In [31] is is
shown that the octagon’s object-logical (syllogistic) decoration is intimately
related to the metalogical decoration that has been discussed here.

To finish this subsection, we will study two different ways to turn the
weak JSB hexagon in Figure 25(b) into a strong JSB hexagon. Note that the
reason for the JSB hexagon in Figure 25(b) being weak is that its contrariety
triangle consists of CD∪C , BI ∪LI and NCD∩NI , and thus lacks SC and RI
(see Footnote 34); in order to obtain a strong JSB hexagon, we thus need to
add these two relations to the hexagon’s contrariety triangle. One possibility
is to combine both relations into SC ∪ RI , and add this to NCD ∩ NI ,
which results in the Aristotelian hexagon in Figure 27(a). If we make the
assumption that the relations’ first argument is satisfiable and that their
second argument is contingent, then this hexagon can be shown to be a strong
JSB hexagon. An alternative possibility is to add SC to CD ∪C , and RI to
BI∪LI , which results in the Aristotelian hexagon in Figure 27(b). This second
possibility is conceptually more elegant than the first one, since it better
respects the distinction between the opposition and implication geometries.39

Furthermore, if we make the assumption that both of the relations’ arguments
are contingent, then the diagram in Figure 27(b) can be shown to be a strong
JSB hexagon as well.

36Proof: it is trivial that (CD ∪C ) ∪ (BI ∪RI ) is not the universal relation over B(S); to
see that (CD ∪C ) ∩ (BI ∪RI ) = ∅, note that (ϕ,ψ) ∈ (CD ∪C ) ∩ (BI ∪RI ) entails that
S |= ¬(ϕ ∧ ψ) and S |= ψ → ϕ, and thus S |= ¬ψ, which contradicts our assumption that

ψ is (contingent and thus) satisfiable.
37Proof: it is trivial that (BI ∪ LI ) ∪ (CD ∪ SC ) is not the universal relation over B(S);
to see that (BI ∪ LI ) ∩ (CD ∪ SC ) = ∅, note that (ϕ,ψ) ∈ (BI ∪ LI ) ∩ (CD ∪ SC ) entails

that S |= ϕ → ψ and S |= ϕ ∨ ψ, and thus S |= ψ, which contradicts our assumption that
ψ is (contingent and thus) not a tautology.
38Although the Aristotelian octagon in Figure 26(b) was obtained by combining the two

classical Aristotelian squares in Figure 24(b) and 26(a), it can also be seen as the result of
combining the degenerated squares in the centers of the two Buridan octagons in Figures 16

and 20.
39The hexagon in Figure 27(b) is also intimately related to the information perspective on
OG and IG developed in [79].
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Figure 27. (a) strong JSB hexagon (constraint: satisfiabil-
ity of the first argument and contingency of the second ar-
gument), (b) another strong JSB hexagon (constraint: con-
tingency of both arguments)

6.2. Aristotelian Diagrams for the Duality Relations

We now turn to Aristotelian diagrams for the duality relations id, eneg, ineg
and dual, which were introduced in Subsection 3.2. Just like the Aristotelian
relations (but unlike the opposition and implication relations), the duality
relations do not constitute a partition of B(S)×B(S): they are neither jointly
exhaustive (for example, p and q do not stand in any duality relation at all),
nor mutually exclusive (as was explained in Subsection 3.2, the existence
of operators that are their own duals or internal negations entails that id ∩
dual 6= ∅ 6= eneg∩ineg and id∩ineg 6= ∅ 6= eneg∩dual, respectively). We
thus find ourselves in a situation that is highly similar to the one described
at the beginning of the previous subsection, and we will therefore use the
same strategy for dealing with it: we will proceed in a local fashion, and
construct various interesting Aristotelian diagrams for the duality geometry
DG, without viewing them as subdiagrams of some larger, Boolean closed
Aristotelian diagram. Furthermore, just as in the previous subsection, many
of the Aristotelian diagrams that will be studied here do not hold in full
generality, i.e. for all pairs of operators (O1, O2), but only if we impose certain
additional conditions on the operators, such as not being their own dual or
internal negation.40 For each diagram that is studied in this subsection, we
will therefore again explicitly state the additional conditions it depends on.

40Recall that in Subsection 6.1, we imposed additional conditions on the Aristotelian rela-

tions’ two arguments independently—for example, it made sense to require the first formula
to be satisfiable, and the second formula to be contingent ; see Figure 27(a). Since the du-

ality relations are functional, however, it can easily be shown that a duality relation’s first

argument satisfies a certain condition iff its second argument satisfies that same condi-
tion; for example, if two operators O1 and O2 stand in some duality relation R ∈ DG,

then we have the following chain of equivalences: O2 is self-dual iff dual(O2) = O2 iff

R(dual(O2)) = R(O2) iff dual(R(O2)) = R(O2) iff dual(O1) = O1 iff O1 is self-dual.
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Figure 28. (a) degenerated Aristotelian square for duality
relations (constraints: none), (b) classical Aristotelian square
for the same duality relations (constraint: no operators that
are their own dual), (c) ‘unconnected-8’ hexagon for the du-
ality relations (constraints: none)

We begin by defining an Aristotelian square for the duality relations
ineg and eneg, and their complements, which will be denoted as ‘not ineg’
and ‘not eneg’.41 By definition, ineg and ‘not ineg’ are contradictory to
each other, and similarly for eneg and ‘not eneg’. Whether there are any
other Aristotelian relations holding between these four relations, however,
depends on the additional conditions we are willing to impose on the relations’
arguments. It can be shown that without additional conditions, there are no
Aristotelian relations besides the two aforementioned contradictions, and we
thus obtain the ‘degenerated’ square shown in Figure 28(a). In particular,
note that ineg and eneg are not contrary to each other, since if the operator
O is self-dual, then ineg(O) = eneg(O), and thus ineg∩eneg 6= ∅. However,
if we impose the additional condition that the relations’ arguments should
be operators that are not self-dual, then it does hold that ineg ∩ eneg = ∅,
which (together with the trivial fact that ineg ∪ eneg is not the universal
relation over BAn

:= {O | O : An → B}) implies that ineg and eneg are
contrary to each other. Similarly, if we exclude self-dual operators, we also
find two subalternations and a subcontrariety, and thus obtain the classical
Aristotelian square shown in Figure 28(b).

A more general picture can be obtained by considering Aristotelian di-
agrams that simultaneously contain the non-trivial (i.e. non-id) duality re-
lations eneg, ineg and dual. By definition, these three relations are con-
tradictory to their complements, i.e. ‘not eneg’, ‘not ineg’ and ‘not dual’,
respectively. Furthermore, it can be shown that dual and ineg are contrary

Therefore, in this subsection we will always impose the same condition(s) on both of the
duality relations’ arguments.
41Note that because of our ‘local’ approach, we cannot write ineg =

⋃
X and ‘not ineg’

=
⋃
Y for some sets of relations X ,Y. Of course, if we were working with a partition P

such that DG ⊆ ℘∪(P), then we would have ineg =
⋃
X for some X ⊆ P, and hence also

‘not ineg’ =
⋃

(P − X ). Similar remarks apply to eneg.
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to each other, since dual∩ ineg = ∅: if there were operators O1, O2 : An → B
such that (O1, O2) ∈ dual ∩ ineg, then dual(O1) = O2 = ineg(O1), so
eneg(O2) = eneg(ineg(O1)) = dual(O1) = O2, and thus B would be the
trivial Boolean algebra in which ⊥B = >B (recall Footnote 5). For essentially
the same reason, it also holds that ‘not ineg’ and ‘not dual’ are subcon-
trary to each other, and also that there are subalternations from dual to
‘not ineg’ and from ineg to ‘not dual’. However, if we do not make any
additional assumptions about the operators, then there are no other Aris-
totelian relations among dual, ineg, eneg and their complements besides
the ones that have just been mentioned, and we thus end up with the Aris-
totelian hexagon shown in Figure 28(c). This type of hexagon has recently
been called an ‘unconnected-8’ hexagon, since it contains exactly 8 pairs of
vertices that do not stand in any Aristotelian relation at all [32].42 Such
‘unconnected-8’ hexagons have not been studied extensively so far, but it is
known that representing them with bitstrings requires bitstring of length at
least 5 (unlike all other types of Aristotelian hexagons, which can be repre-
sented with bitstrings of length 3 or 4).

If we now make the additional assumption that the duality relations’
arguments should be operators that are not their own duals, it holds that
ineg ∩ eneg = ∅, and we thus find a contrariety between ineg and eneg,
and also the corresponding subcontrariety and two subalternations (recall the
transition from the degenerated square in Figure 28(a) to the classical square
in Figure 28(b)); the hexagon as a whole thus turns into an ‘unconnected-4’
hexagon, which is shown in Figure 29(a). Completely analogously, if we in-
stead make the additional assumption that the duality relations’ arguments
should be operators that are not their own internal negations, it holds that
dual∩eneg = ∅, and we thus find a contrariety between dual and eneg, and
also the corresponding subcontrariety and two subalternations; the hexagon
as a whole again turns into an ‘unconnected-4’ hexagon, which is shown in
Figure 29(b). Note that although the Aristotelian hexagons in Figure 29(a)
and (b) both belong to the ‘unconnected-4’ family, there is still a crucial
difference between them, which has to do with the ‘distribution’ of uncon-
nectedness across the hexagon (i.e. which duality relations stand/do not stand
in some Aristotelian relation to each other).

Finally, if we simultaneously impose the two additional assumptions
that the duality relations’ arguments should be operators that are neither
their own duals nor their own internal negations, then the resulting hexagon
turns out to be a JSB hexagon, which is shown in Figure 29(c). It should be
noted that this is a weak JSB hexagon, since dual∪ ineg∪ eneg is not the
universal relation over the class BAn

of all operators O : An → B.

42Note the terminological analogy with the ‘unconnected-4’ hexagon.
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Figure 29. (a) ‘unconnected-4’ hexagon for the duality re-
lations (constraint: no operators that are their own dual),
(b) ‘unconnected-4’ hexagon for the duality relations (con-
straint: no operators that are their own internal negation),
(c) weak JSB hexagon for the duality relations (constraint:
no operators that are their own dual or internal negation)

7. Duality Diagrams for the Opposition/Implication Relations

In Sections 4, 5 and 6, we showed that the opposition, implication, Aris-
totelian, and duality geometries yield various interesting metalogical deco-
rations of Aristotelian diagrams. In this section and the next one, we will
discuss how these four geometries can also be used to decorate another type
of logical diagrams, viz. duality diagrams. In this section, we will focus on
duality diagrams for the opposition relations (Subsection 7.1), and also make
some brief comments about duality diagrams for the implication relations
(Subsection 7.2).

7.1. Duality Diagrams for the Opposition Relations

We start by studying duality diagrams for the opposition relations. At first
sight, it might look like a ‘category mistake’ to talk about duality relations
holding between opposition relations, since in Subsection 3.2 the duality re-
lations were defined between operators, rather than relations (recall Defi-
nition 3.6). However, every relation R can naturally be associated with an
operator, viz. its characteristic function χR; when the characteristic func-
tions χR and χS stand in some duality relation, then in a derived sense,
the relations R and S themselves can also be said to stand in that duality
relation. In particular, since each opposition relation R ∈ OGS is a binary
relation over the Lindenbaum-Tarski algebra B(S), its characteristic function
χR looks as follows:

χR : B(S)× B(S)→ {0, 1} : ([ϕ], [ψ]) 7→ χR([ϕ], [ψ]) :=

{
1 if ([ϕ], [ψ]) ∈ R,
0 if ([ϕ], [ψ]) /∈ R.

Since {0, 1} can be seen as a Boolean algebra (viz. the smallest non-trivial
Boolean algebra), the operator χR is of the right ‘type’, and Definition 3.6
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is applicable to it. To illustrate this, consider item 2a of Lemma 3.3, which
states the following:

for all formulas ϕ,ψ : C (ϕ,ψ) iff SC (¬ϕ,¬ψ).

Reformulating this in terms of characteristic functions, we get:

for all formulas ϕ,ψ : χC (ϕ,ψ) = 1 iff χSC (¬ϕ,¬ψ) = 1.

Now, in the smallest non-trivial Boolean algebra {0, 1}, the biconditional
x = 1⇔ y = 1 is equivalent to x = y, and thus we get:

for all formulas ϕ,ψ : χC (ϕ,ψ) = χSC (¬ϕ,¬ψ).

By Definition 3.6, this means exactly that ineg(χC , χSC ), i.e. χC and χSC

are each other’s internal negation. Moving from characteristic functions to
the opposition relations themselves, we can also say, in a derived sense, that
ineg(C ,SC ).43 Completely analogously, items 1a and 4a of Lemma 3.3 entail
that ineg(CD ,CD) and ineg(NCD ,NCD), i.e. CD and NCD are their own
internal negations.

Similar remarks also apply to non-atomic relations of ℘∪(OG). Consider,
for example, the relations CD ∪C ∪NCD and CD ∪ SC ∪NCD: it follows
immediately from items 1a, 2a and 4a of Lemma 3.3 that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ CD∪C∪NCD iff (¬ϕ,¬ψ) ∈ CD∪SC∪NCD .

Reformulating this in terms of characteristic functions, we get

for all formulas ϕ,ψ : χCD∪C∪NCD(ϕ,ψ) = 1 iff χCD∪SC∪NCD(¬ϕ,¬ψ) = 1

and hence

for all formulas ϕ,ψ : χCD∪C∪NCD(ϕ,ψ) = χCD∪SC∪NCD(¬ϕ,¬ψ),

which means exactly that ineg(CD ∪ C ∪NCD ,CD ∪ SC ∪NCD).
We can also study other duality relations holding between the opposi-

tion relations. For example, since OG is a partition of B(S) × B(S) (recall
Lemma 3.5), it follows that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ CD iff (ϕ,ψ) /∈ C ∪ SC ∪NCD .

Reformulating this in terms of characteristic functions, we get

for all formulas ϕ,ψ : χCD(ϕ,ψ) = 1 iff χC∪SC∪NCD(ϕ,ψ) = 0.

43The idea that contrariety and subcontrariety are each others internal negation is not

entirely new. A closely related idea can already be found in the Summulae Logicales of the
13th century philosopher Petrus Hispanus: after he has given the definitions (which he calls

‘laws) of contrariety and subcontrariety, Hispanus writes that “the law of subcontraries is

the reverse of the law of contraries’ [18, p. 113, our emphasis]. Interestingly, the original
Latin text says that the law of subcontraries is contrary to the law of subcontraries (“lex

subcontrariarum contrario modo se habet legi contrariarum’ [18, p. 112, our emphasis]),

which is a particularly ironic example of the confusion between Aristotelian relations and
duality relations that was mentioned in Subsect. 3.2. The English translation as ‘reverse is

thus not literally correct, but it probably better captures what Hispanus had in mind (see
[18, p. 113, Footnote 16] for the translators remarks about this issue).



Metalogical Decorations of Logical Diagrams 45

Figure 30. (a) Duality square for C and SC , (b–c) degen-
erated duality diagrams for CD and NCD

Now, in the smallest non-trivial Boolean algebra {0, 1}, the biconditional
x = 1⇔ y = 0 is equivalent to x = ¬y (where ¬ is the complement operator
of the {0, 1} Boolean algebra, i.e. ¬y := 1− y), and thus we get:

for all formulas ϕ,ψ : χCD(ϕ,ψ) = ¬χC∪SC∪NCD(ϕ,ψ).

By Definition 3.6, this means exactly that eneg(χCD , χC∪SC∪NCD), i.e. CD
and C ∪ SC ∪NCD are each other’s external negation. In general, it can be
shown that eneg(

⋃
X ,
⋃

(OG − X )) for all X ⊆ OG.
We have already established that ineg(C ) = SC and eneg(SC ) = CD∪

C ∪NCD . Since eneg ◦ ineg = dual, it should follow that also dual(C ) =
eneg(ineg(C)) = eneg(SC) = CD ∪ C ∪ NCD . To verify this, note that
Lemmas 3.5 and 3.3 imply that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ C iff (¬ϕ,¬ψ) /∈ CD ∪ C ∪NCD ,

and hence

for all formulas ϕ,ψ : χC (ϕ,ψ) = ¬χCD∪C∪NCD(¬ϕ,¬ψ),

which by Definition 3.6 means indeed that dual(C ,CD ∪ C ∪NCD).
We are now in a position to construct actual duality diagrams for the

relations in ℘∪(OG). First of all, based on the fact that ineg(C ,SC ), we can
construct the duality square shown in Figure 30(a). Note that this square
also visualizes facts such as eneg(C ,CD ∪ SC ∪NCD) and dual(SC ,CD ∪
SC ∪ NCD), all of which follow from Lemmas 3.3 and 3.5. Next, since
ineg(CD ,CD), or, functionally speaking, ineg(CD) = CD , it follows that
dual(CD) = eneg(ineg(CD)) = eneg(CD) = C ∪ SC ∪ NCD , and hence
we find the degenerated duality diagram in Figure 30(b), which is thus a met-
alogical instance of the generic degenerated duality diagram in Figure 4(c).
The fact that ineg(NCD ,NCD) leads to a similar degenerated duality dia-
gram, which is shown in Figure 30(c).

Next, the facts that ineg(CD ∪C ,CD ∪ SC ) and eneg(CD ∪ SC ,C ∪
NCD) lead to the duality square in Figure 31(a), and the fact that CD∪NCD
is its own internal negation—and hence dual(CD ∪ NCD) = eneg(CD ∪
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Figure 31. (a) Duality square for CD ∪ C and other
opposition relations, (b) degenerated duality diagrams for
CD ∪NCD and C ∪SC , (c) degenerated duality diagram for
the empty and universal relation

NCD) = C ∪SC —leads to the degenerated duality diagram in Figure 31(b).
The five duality diagrams shown in Figures 30(a–c) and 31(a–b) jointly ex-
hibit all the duality relations that hold between the 14 opposition relations in
the Aristotelian RDH for ℘∪(OG) (recall Figure 8(b)).44 The only elements of
℘∪(OG) that are not present in this RDH are the empty relation and the uni-
versal relation over B(S) (recall Footnote 9); these two relations turn out to
be their own internal negations and each other’s external negations, and thus
lead to a final degenerated duality diagram, which is shown in Figure 31(c).

It is interesting to note that several (sets of) opposition relations consti-
tute Aristotelian as well as duality diagrams. For example, we have just shown
that C , SC , CD ∪ C ∪ NCD and CD ∪ SC ∪ NCD yield the duality square
shown in Figure 30(a), but in Subsection 4.4 it was shown that these same
four opposition relations also yield a classical Aristotelian square, which was
shown in Figure 14(a), and is embedded as the ‘vertically stretched’ square
inside the Buridan octagon in Figure 16(a). By contrast, CD ∪C , CD ∪ SC ,
C ∪NCD and SC ∪NCD yield the duality square shown in Figure 31(a), but
the corresponding Aristotelian diagram is not a classical square, but rather
a ‘degenerated’ square (or ‘cross’), which is embedded as the ‘horizontally
stretched’ square inside the Buridan octagon in Figure 16(a).

These observations can be used to the argue for the conceptual inde-
pendence between the Aristotelian and duality geometries. From a duality
perspective, there is no difference whatsoever between the duality squares in
Figures 30(a) and 31(a). The corresponding Aristotelian squares, however,
are radically different from each other: the first one is a classical Aristotelian
square, whereas the second one is a ‘degenerated’ square, i.e. an Aristotelian

44Analogously, at the object-logical level, [76] studies the duality relations that hold in the
Aristotelian RDH decorated with the 14 binary propositional connectives.
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‘cross’. As to individual relations, note, for example, that dual(C ,CD ∪C ∪
NCD) as well as dual(CD ∪ C ,C ∪ NCD). Switching from the duality to
the Aristotelian perspective, however, we see that there is a subalternation
from C to CD ∪C ∪NCD , whereas CD ∪C and C ∪NCD are unconnected
(i.e. they do not stand in any Aristotelian relation at all). This clearly shows
that the duality relation dual cannot straightforwardly be identified with
the Aristotelian relation of subalternation. This argument for the conceptual
independence between the Aristotelian and duality geometries has already
been made earlier in the literature (recall the relevant discussion in Subsec-
tion 3.2), but what we have shown here, is that the argument can be made
not only based on object-logical notions (as has been done so far in the lit-
erature), but also based on metalogical notions.

We will finish this subsection with a more ‘lightweight’, terminological
observation. Recall that in Subsection 4.4, we studied two ‘weak’ notions of
contrariety, viz. Cw = CD ∪C and C ∗w = C ∪NCD , and informally said that
these two notions are ‘dual’ to each other, since they can both be obtained
from the strong notion of contrariety (Cs = C ) by dropping the latter’s 6|=-
or |=-condition, respectively. However, in this subsection we have shown that
dual(CD ∪ C ,C ∪ NCD), which means exactly that dual(Cw,C

∗
w), and

hence, Cw and C ∗w turn out to be also ‘dual’ to each other in the technically
precise sense of the word!45

7.2. Duality Diagrams for the Implication Relations

By now, it should no longer come as a surprise that all results from the
previous subsection about duality diagrams for the opposition relations can
straightforwardly be transposed to duality diagrams for the implication rela-
tions (also recall the relation between Sections 4 and 5 on Aristotelian dia-
grams for OG and IG, respectively). In particular, it follows from Lemma 3.3
that BI and NI are their own internal negation, and that LI and RI are
each other’s internal negation. Constructing duality diagrams for the im-
plication relations is thus entirely straightforward; however, to avoid being
overly repetitive, we will not do this in full detail at this point.

8. Duality Diagrams for Aristotelian and Duality Relations

In this section, we finish our exploration of metalogical decorations of duality
diagrams. Subsection 8.1 studies duality diagrams for the Aristotelian rela-
tions, while Subsection 8.2 studies duality diagrams for the duality relations
themselves.

8.1. Duality Diagrams for Aristotelian Relations

Since the Aristotelian geometry is hybrid between the opposition and impli-
cation geometries (AG ⊆ OG ∪ IG), many of the diagrams that were studied
in Section 7 can be viewed not only as duality diagrams for OG or IG, but

45Similar remarks can be made, of course, about SCw = CD ∪SC and SC∗w = SC ∪NCD .
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also as duality diagrams for AG itself (a similar observation was made at
the beginning of Subsection 6.1 about OG/IG- and AG-based decorations of
Aristotelian diagrams). However, these diagrams do not entirely exemplify
the hybrid nature of AG, since none of them has a decoration that contains
opposition and implication relations simultaneously. This is not a coincidence,
since the ineg-relations in these diagrams are all based on Lemma 3.3, which
describes the effects of negating both arguments of an opposition or impli-
cation relation. This lemma does not establish any connection between OG
and IG: if both arguments of an opposition (resp. implication) relation are
negated, the result is again an opposition (resp. implication) relation. This
shows that there do not exist any duality diagrams (in the classical sense of
the word ‘duality’, as captured by Definition 3.6) whose decoration contains
opposition and implication relations simultaneously.

From this perspective, Lemma 3.3 stands in sharp contrast to Lemma 3.4.
The latter describes the effects of negating only a single (either the first or
the second) argument of an opposition or implication relation, and thereby
establishes various links between OG and IG: if a single argument of an op-
position relation is negated, the result is an implication relation, and vice
versa. In terms of duality, this means that by moving from classical duality
(Definition 3.6) to generalized Post duality (Definition 3.7), we will be able
to construct duality diagrams whose decoration contains opposition as well
as implication relations.

To illustrate this, consider item 2b of Lemma 3.4, which states the
following:

for all formulas ϕ,ψ : C (ϕ,ψ) iff LI (ϕ,¬ψ).

Reformulating this in terms of characteristic functions, we get:

for all formulas ϕ,ψ : χC (ϕ,ψ) = 1 iff χLI (ϕ,¬ψ) = 1

and hence:

for all formulas ϕ,ψ : χC (ϕ,ψ) = χLI (ϕ,¬ψ).

By Definition 3.7, this means exactly that ineg2(χC , χLI ), and in a de-
rived sense, ineg2(C ,LI ). In exactly the same way, it can be shown that
ineg2(CD ,BI ), ineg2(SC ,RI ), and so on. Moving to non-atomic relations
of ℘∪(OG) and ℘∪(IG), we find, for example:

for all formulas ϕ,ψ : (ϕ,ψ) ∈ CD ∪ C iff (ϕ,¬ψ) ∈ BI ∪ LI .

and hence

for all formulas ϕ,ψ : χCD∪C (ϕ,ψ) = χBI∪LI (ϕ,¬ψ),

which means exactly that ineg2(CD ∪C ,BI ∪LI ). Analogously, it also holds
that ineg2(SC ∪NCD ,RI ∪NI ).

We have already established that ineg2(CD ∪ C ) = BI ∪ LI and (in
Subsection 7.2) that eneg(BI ∪ LI ) = RI ∪ NI . Since eneg ◦ ineg2 =
dual2, it should follow that also dual2(CD∪C ) = eneg(ineg2(CD∪C )) =
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Figure 32. Three generalized Post duality squares

eneg(BI ∪LI ) = RI ∪NI . To verify this, note that Lemmas 3.5 and 3.4 imply
that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ CD ∪ C iff (ϕ,¬ψ) /∈ RI ∪NI ,

and hence

for all formulas ϕ,ψ : χCD∪C (ϕ,ψ) = ¬χRI∪NI (ϕ,¬ψ),

which by Definition 3.7 indeed means that dual2(CD ∪ C ,RI ∪NI ).
In sum, then, we find that the opposition relations CD ∪ C and SC ∪

NCD together with the implication relations BI ∪ LI and RI ∪ NI can be
used to decorate a generalized Post duality square, which is shown in Fig-
ure 32(a). Note that these are exactly the four relations defined by Löbner
[52, p. 55], who explicitly recognized that they “themselves form a duality
square with respect to the predicate [i.e. using ineg2 and dual2 instead of
ineg and dual]” (emphasis added). In Subsection 6.1 we showed that these
four relations also yield an Aristotelian square (recall Figure 24), and pointed
out that this, too, was already recognized by Löbner. The exact nature of
this Aristotelian square turned out to depend on whether or not the relations’
first argument is assumed to be satisfiable—compare Figure 24(a) and (b).
By contrast, the (generalized Post) duality square in Figure 32(a) does not
depend on any additional assumptions.

In an analogous fashion, it can be shown that CD∪SC , C∪NCD ,BI∪RI
and LI ∪NI yield another generalized Post duality square, which is shown in
Figure 32(b). Note that these are exactly the four relations that were used in
Subsection 6.1 to define a ‘variant’ to Löbner’s square (recall Figure 26(a)).
Furthermore, the exact nature of this Aristotelian square turned out to de-
pend on whether or not the relations’ first argument is not a tautology; by
contrast, the corresponding generalized Post duality square in Figure 32(b)
does not depend on any additional assumptions.

Similar results can be obtained if we work with ineg1 instead of ineg2.
For example, it follows from items 1a and 2a of Lemma 3.4 that ineg1(CD ∪
C ,BI ∪RI ), and from items 3a and 4a of the same lemma that ineg1(SC ∪
NCD ,LI ∪ NI ). Furthermore, also making use of Lemma 3.5, it is easy to
check that dual1(CD ∪ C ,LI ∪ NI ) and dual1(SC ∪ NCD ,BI ∪ RI ). The
resulting generalized Post duality square is shown in Figure 32(c).
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Figure 33. (a) Shield and spear generalized Post duality
diagram corresponding to Seuren’s Aristotelian hexagon in
Figure 25, (b) generalized Post duality cube corresponding
to the Aristotelian octagon in Figure 26(b)

Recall that in Subsection 6.1, we also studied Seuren’s Aristotelian
metahexagon, which can be obtained by adding CD ∪C ∪SC ∪BI ∪LI ∪RI
and NCD ∩ NI to Löbner’s four relations (recall Figure 25). Now, it follows
from Lemma 3.4 that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ NCD ∩NI iff (ϕ,¬ψ) ∈ NCD ∩NI ,

and hence ineg2(NCD∩NI ,NCD∩NI ). Analogously, it holds that ineg2(CD∪
C ∪ SC ∪ BI ∪ LI ∪ RI ,CD ∪ C ∪ SC ∪ BI ∪ LI ∪ RI ) and dual2(NCD ∩
NI ,CD ∪C ∪SC ∪BI ∪LI ∪RI ). Seuren’s Aristotelian hexagon in Figure 25
thus turns out to correspond to the generalized Post duality diagram shown
in Figure 33(a). This diagram consists of two ‘independent’ parts, viz. the
duality square which was already shown in Figure 32(a), and a degenerated
duality diagram containing NCD ∩NI and CD ∪ C ∪ SC ∪ BI ∪ LI ∪RI .46

Finally, recall that in Subsection 6.1 it was shown that the exact nature of
Seuren’s Aristotelian hexagon depends on whether or not the relations’ first
argument is assumed to be satisfiable—compare Figure 25(a) and (b). By
contrast, the (generalized Post) duality diagram in Figure 33(a) does not
depend on any additional assumptions.

We showed in Subsection 3.2 that generalized Post duality generally
gives rise to cube diagrams. Starting with CD ∪ C and applying the ineg1-,
ineg2-, dual1- and dual2-operators (and their combinations) to it, we find
exactly the 8 relations that were shown in Subsection 6.1 to yield the Aris-
totelian octagon in Figure 26(b). In other words, from a duality perspective,

46The duality diagram corresponding to a JSB hexagon was called a “shield and spear”
diagram by Smessaert [77, p. 180].
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the Aristotelian octagon in Figure 26(b) turns out to correspond to a gen-
eralized Post duality cube, which is shown in Figure 33(b). This cube has
been studied before in [51, Figure 3], and it contains the (classical) duality
square in Figure 31(a) and the three (generalized Post) duality squares in
Figure 32 as subdiagrams on its diagonal planes. Finally, recall that in Sub-
section 6.1 it was shown that the exact nature of the Aristotelian octagon
in Figure 26(b) depends on whether or not the relations’ first and second
argument are assumed to be contingent. By contrast, the corresponding gen-
eralized Post duality cube in Figure 33(b) does not depend on any additional
assumptions.

8.2. Duality Diagrams for Duality Relations

In this subsection we will show that the duality relations can themselves be
used to decorate duality diagrams. The key idea is that the duality relations
are all essentially their own internal negations. Consider, for example, the
eneg-relation: for any two operators O1, O2 : An → B, the Boolean nature of
¬B and Definition 3.6 imply that47

eneg(O1, O2) iff for all a ∈ An: O1(a) = ¬BO2(a)
iff for all a ∈ An: ¬BO1(a) = ¬B¬BO2(a)
iff eneg(¬BO1,¬BO2).

To make this fully precise, we will write F for the class of all operators
O : An → B. It is well-known that F is itself a Boolean algebra, whose Boolean
operators are defined pointwise. For example, given operators O1, O2 ∈ F,
their meet O1 ∧F O2 is defined to be the operator O1 ∧F O2 : An → B : a 7→
(O1 ∧F O2)(a) := O1(a) ∧B O2(a), and similarly, the complement ¬FO1 is
defined to be the operator ¬FO1 : An → B : a 7→ (¬FO1)(a) := ¬B(O1(a)).
Relations such as eneg are binary relations on F and hence, their charac-
teristic function is itself an operator χeneg : F2 → {0, 1}. Since F as well as
{0, 1} are Boolean algebras, the operator χeneg is of the right ‘type’, and Def-
inition 3.6 is applicable to it. In particular, recall that we have just showed
above that

for all O1, O2 ∈ F : eneg(O1, O2) iff eneg(¬BO1,¬BO2).

Putting it in terms of characteristic functions, this becomes:

for all O1, O2 ∈ F : χeneg(O1, O2) = 1 iff χeneg(¬BO1,¬BO2) = 1.

Now, in the Boolean algebra {0, 1}, the biconditional x = 1 ⇔ y = 1 is
equivalent to x = y, and thus we get:

for all O1, O2 ∈ F : χeneg(O1, O2) = χeneg(¬BO1,¬BO2).

Because of the pointwise definition of ¬F in terms of ¬B, this can be refor-
mulated one final time, as follows:

for all O1, O2 ∈ F : χeneg(O1, O2) = χeneg(¬FO1,¬FO2).

47We write a for the n-tuple (a1, . . . , an) ∈ An, and also ¬Aa for (¬Aa1, . . . ,¬Aan) ∈ An.
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By Definition 3.6, this means exactly that ineg(χeneg, χeneg). Moving from
the characteristic function χeneg to the duality relation eneg itself, we can
also say, in a derived sense, that ineg(eneg,eneg), i.e. eneg is its own
internal negation.

In exactly the same way, it can also be shown that the other duality
relations, id, ineg and dual, are their own internal negations, based on the
following chains of equivalences:

id(O1, O2) iff for all a ∈ An: O1(a) = O2(a)
iff for all a ∈ An: ¬BO1(a) = ¬BO2(a)
iff id(¬BO1,¬BO2),

ineg(O1, O2) iff for all a ∈ An: O1(a) = O2(¬Aa)
iff for all a ∈ An: ¬BO1(a) = ¬BO2(¬Aa)
iff ineg(¬BO1,¬BO2),

dual(O1, O2) iff for all a ∈ An: O1(a) = ¬BO2(¬Aa)
iff for all a ∈ An: ¬BO1(a) = ¬B¬BO2(¬Aa)
iff dual(¬BO1,¬BO2).

We will also consider the complement of the eneg-relation, i.e. ‘not
eneg’ := F2 − eneg. By definition of ‘not eneg’, it holds that

for all O1, O2 ∈ F : (O1, O2) ∈ ‘not eneg’ iff (O1, O2) /∈ eneg.

Putting this in terms of characteristic functions, we get:

for all O1, O2 ∈ F : χ‘not eneg’(O1, O2) = 1 iff χeneg(O1, O2) = 0.

Now, in the Boolean algebra {0, 1}, the biconditional x = 1 ⇔ y = 0 is
equivalent to x = ¬y (where ¬ is the complement operator of the {0, 1}
Boolean algebra, i.e. ¬y := 1− y), and thus we get:

for all O1, O2 ∈ F : χ‘not eneg’(O1, O2) = ¬χeneg(O1, O2).

By Definition 3.6, this means exactly that eneg(χ‘not eneg’, χeneg), or in a
derived sense: eneg(‘not eneg’,eneg).

We have already established above that ineg(eneg) = eneg and just
now also that eneg(eneg) = ‘not eneg’; it now follows that dual(eneg) =
(eneg ◦ ineg)(eneg) = eneg(ineg(eneg)) = eneg(eneg) = ‘not eneg’,
and hence dual(eneg, ‘not eneg’).

In exactly the same way, we can also define the relations ‘not id’ :=
F2− id, ‘not ineg’ := F2− ineg and ‘not dual’ := F2−dual, and show the
following:

eneg(id, ‘not id’), dual(id, ‘not id’),
eneg(ineg, ‘not ineg’), dual(ineg, ‘not ineg’),
eneg(dual, ‘not dual’), dual(dual, ‘not dual’).

Each of the four duality relations R ∈ DG thus gives rise to a degen-
erated duality diagram, which is shown in Figure 34. Unfortunately, these
degenerated duality diagrams are not particularly interesting. A much richer
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Figure 34. Degenerated duality diagrams for the duality relations

perspective can be obtained by considering the generalized Post duality rela-
tions holding between the duality relations.48 For example, note that for all
operators O1, O2 : An → B, we have:

id(O1, O2) iff for all a ∈ An: O1(a) = O2(a)

iff for all a ∈ An: ¬BO1(a) = ¬BO2(a)
iff eneg(¬BO1, O2)

iff for all a ∈ An: O1(a) = ¬B¬BO2(a)
iff eneg(O1,¬BO2).

These chains of equivalences can be used to show that ineg1(id,eneg) and
ineg2(id,eneg). Furthermore, we can also show that ineg1(ineg,dual) and
ineg2(ineg,dual), based on the following chains of equivalences:

ineg(O1, O2) iff for all a ∈ An: O1(a) = O2(¬Aa)

iff for all a ∈ An: ¬BO1(a) = ¬BO2(¬Aa)
iff dual(¬BO1, O2)

iff for all a ∈ An: O1(a) = ¬B¬BO2(¬Aa)
iff dual(O1,¬BO2).

We have just shown that inegi(id) = eneg and inegi(ineg) = dual
(for i = 1, 2). Using this, we find

duali(id) = eneg(inegi(id)) = eneg(eneg) = ‘not eneg’,
duali(ineg) = eneg(inegi(ineg)) = eneg(dual) = ‘not dual’,

and hence duali(id, ‘not eneg’) and duali(ineg, ‘not dual’) (for i = 1, 2).

48In this paper we will focus on generalized Post duality relations holding between the

‘classical’ duality relations; in other words, we will define ‘classical’ duality decorations

for generalized Post duality diagrams. Of course, one could also study (classical and/or
generalized Post) duality relations holding between the generalized Post duality relations

themselves, or, in other words, define generalized Post duality decorations for (classical
and/or generalized Post) duality diagrams. This, however, will be left for another paper.
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Figure 35. Generalized Post duality square for id and eneg

Figure 36. Generalized Post duality square for ineg and dual

By going from ‘classical’ to generalized Post duality, the degenerated
duality diagrams for id and eneg in Figure 34(a) and (b) thus ‘click to-
gether’ to yield a generalized Post duality square, which is shown in Fig-
ure 35(a). Since ineg1(id) = eneg = ineg2(id), this square can actually be
seen as a degenerated generalized Post duality cube (see Figure 6 in Subsec-
tion 3.2). Furthermore, if we ignore the classical ineg- and dual-relations,
then this square can be decomposed into a square for ineg1/dual1 and one
for ineg2/dual2, which are shown in Figure 35(b) and (c), respectively.

Finally, the degenerated duality diagrams for ineg and dual in Fig-
ure 34(c) and (d) also ‘click together’ to yield another generalized Post dual-
ity square, which is shown in Figure 36(a). We can make the same remarks
about this square as about the one in Figure 35(a); in particular, if we ignore
the classical ineg- and dual-relations, it again decomposes into a square for
ineg1/dual1 and one for ineg2/dual2, which are shown in Figure 36(b)
and (c), respectively.

9. Conclusion

When dealing with logical diagrams, we can distinguish between a diagram’s
type and its decoration. The diagram’s decoration consists of the formu-
las/notions that it represents, while its type is determined by the kind of
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logical relations holding between those formulas/notions.49 Consider, for ex-
ample, the square diagram in Figure 2(b): this is an Aristotelian square for
(formulas from) the modal logic S5, so we can say that its type is Aristotelian,
while its decoration is based on S5.

In this paper, we have studied metalogical diagrams, whose types and
decorations consist of logical relations. In particular, we have studied two di-
agram types, viz. Aristotelian diagrams and duality diagrams, and four kinds
of diagram decorations, viz. based on relations from the opposition geometry
(OG), the implication geometry (IG), the Aristotelian geometry (AG) and
the duality geometry (DG). A high-level overview of the core sections of the
paper can therefore be given by means of the following table:

OG IG AG DG
Aristotelian

Sect. 4 Sect. 5 Subsect. 6.1 Subsect. 6.2
diagrams
duality

Subsect. 7.1 Subsect. 7.2 Subsect. 8.1 Subsect. 8.2
diagrams

This overview table suggests a natural question: why are the opposition
and implication relations only used in the diagrams’ decorations, and not in
the diagram types? In other words, shouldn’t it also be possible to study op-
position diagrams and implication diagrams for the opposition, implication,
Aristotelian and duality relations? The answer is that this is indeed perfectly
possible. In Subsection 3.1 it was explained that for every Aristotelian dia-
gram, we can define a corresponding opposition diagram and a corresponding
implication diagram (with the original Aristotelian diagram being informa-
tionally optimal among the three types of diagrams). For example, given the
Aristotelian square for S5 shown in Figure 2(b), we can define the correspond-
ing opposition and implication squares for S5, which are shown in Figure 2(a)
and (c), respectively. This account perfectly transfers from object- to meta-
logical decorations, and hence, for every Aristotelian diagram that has been
studied in Sections 4, 5 and 6 of this paper, it is possible to define the corre-
sponding opposition and implication diagrams. However, for reasons of space
(and because the Aristotelian diagrams are more informative than their cor-
responding opposition and implication diagrams anyway), we have focused
on the Aristotelian diagrams.

To conclude, we will highlight some general themes that have shown
up at various places throughout the paper. The first such consideration is
that despite their more abstract nature, metalogical decorations of logical
diagrams give rise to the same kinds of linguistic lexicalization patterns
as object-logical decorations. For example, in Subsection 4.2 we compared
the non-lexicalization of the metalogical notions of ‘non-tautology’ and ‘non-
contingency’ (Figure 11) to the non-lexicalization of the quantifiers nall and
allno. Furthermore, in Subsection 4.3 we pointed out that the strong and weak
notions of contrariety are analogous to the bilateral and unilateral readings

49If a logical diagram is viewed as a graph [34], its type and decoration correspond to the

graph’s edges and vertices, respectively.
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of quantifiers such as some and many (see Figure 13). Observations such as
these further reinforce Seuren’s claim that “universal lexicalization phenom-
ena are also present in the terminology of the metalogic of logical relations.
We surely have not heard the last of this” [72, p. 11].

A second remark concerns the relative importance of non-contradiction
(NCD) and non-implication (NI ). In [79] these are shown to be the least infor-
mative relations of their respective geometries, i.e. NCD is the least informa-
tive opposition relation, and NI is the least informative implication relation.
From this perspective, these relations seem to be mathematical artefacts—
needed solely to turn OG and IG into partitions—without much independent
significance. In this paper, by contrast, NCD and NI have played an impor-
tant role at various places.50 For example, in Subsection 4.2 it was shown that
NCD∩∆ = {(ϕ,ϕ) | NCD(ϕ,ϕ)} corresponds to the largest class of formulas,
viz. the contingencies. This allowed us to define the strong JSB hexagon in
Figure 11(b), instead of merely the square in Figure 12. Furthermore, in Sub-
section 4.5 we argued that the errors in Béziau’s hexagon in Figure 17(a–b)
are the result of illicitly ignoring NCD , and showed how these errors can be
corrected by taking this relation into account (see Figure 18). Similarly, in
Subsection 5.2 we explained the difference between the strong JSB hexagon
for total orders in Figure 21(a) and the RDH for partial orders in Figure 22
in terms of NI (or rather, its abstract analogue, the incomparability relation
#). Finally, as was discussed in Subsection 6.1, NCD and NI can be used to
define the notion of unconnectedness or independence (viz. as NCD ∩NI ). In
ongoing work [26], we are exploring the interplay between unconnectedness
and other notions of logical (in)dependence, which gives rise to the same kind
of metalogical diagrams as discussed in this paper.

A third topic of interest is the distinction between ‘classical’ and ‘de-
generated’ Aristotelian squares. It is well-known that the four categorical
statements of syllogistics constitute a ‘classical’ Aristotelian square. How-
ever, it is equally well-known that if we move from syllogistics to contempo-
rary first-order logic, by dropping the assumption of existential import, only
the two contradictions are left, and hence the classical Aristotelian square
degenerates into a mere Aristotelian cross [30, Section 4]. As we have seen
throughout this paper, similar phenomena also occur for metalogical instead
of object-logical decorations. For example, in Subsection 4.2 we defined an
Aristotelian square for metalogical notions such as tautology and satisfiabil-
ity, which is shown in Figure 12(a). However, if we drop the assumption that

50For yet another metalogical illustration of the importance of NCD , recall that in 2003,

Béziau [1] famously argued that the Aristotelian relations CD , C and SC are analogous to
classical, paracomplete and paraconsistent negation, respectively. However, in more recent
work, Béziau has also considered so-called paranormal negations [2, 3, 7]. These are char-

acterized by the fact that a proposition and its paranormal negation can be true together,
and can also be false together. But this means exactly that paranormal negation is analo-
gous to NCD . Béziau’s original analogy can thus be completed as follows: the opposition
relations CD , C , SC and NCD are analogous to classical, paracomplete, paraconsistent
and paranormal negation, respectively.
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the underlying logical system is consistent, then this square degenerates into
a cross, as shown in Figure 12(b). Furthermore, in Subsection 6.1 we showed
that Löbner’s [52, p. 55] four relations yield an Aristotelian square, which
is shown in Figure 24(b). However, if we drop the assumption that the first
argument of Löbner’s relations is satisfiable, then this square also degenerates
into a cross, as shown in Figure 24(a). Finally, in Subsection 6.2 we studied an
Aristotelian square for the duality relations ineg and eneg, which is shown
in Figure 28(b). However, if we drop the assumption that operators cannot
be self-dual, then this square, once more, degenerates into a cross, as shown
in Figure 28(a).

A fourth and final recurrent theme is the subtle relation between the
different types of diagrams. We have seen that several sets of relations can
be used to decorate Aristotelian as well as duality diagrams. In some cases,
however, the Aristotelian diagram turns out to depend on certain additional
assumptions, whereas the corresponding duality diagram does not. For ex-
ample, in Subsection 8.1 we studied the duality square for Löbner’s relations,
which is shown in Figure 32(a). In Subsection 6.1, however, we showed that
these relations can also be used to define an Aristotelian square, but whether
this square is classical or degenerated, depends on whether the relations’ first
argument is assumed to be satisfiable; compare Figure 24(a) and (b). Simi-
larly, the six relations in the duality diagram shown in Figure 33(a) can also
be used to define an Aristotelian hexagon, but whether this is a JSB or a U4
hexagon again depends on whether the relations’ first argument is assumed
to be satisfiable; compare Figure 25(a) and (b).

This sharp contrast between Aristotelian and duality diagrams can be
seen as the metalogical manifestation of a more general phenomenon that
is well-understood at the object-logical level: the Aristotelian relations are
sensitive to the deductive power of the underlying logical system, but the
duality relations are entirely insensitive to this [23].51 Consider, for example,
the formulas �p and �¬p from modal logic. The Aristotelian relation holding
between these formulas heavily depends on the particular modal system that
we happen to be working in. For example, (i) in the system D, these formulas
are contrary, (ii) in the system D + {♦p→ �p}, they are contradictory, and
(iii) in the minimal normal system K, they are unconnected, i.e. they do not
stand in any Aristotelian relation at all [17]. However, switching from Aris-
totelian to duality relations, note that in each of these three modal systems,
it holds that �p and �¬p are each other’s internal negation, which shows
that the duality relation holding between these formulas is independent of
any additional factors. This contrast between ‘context-sensitive’ Aristotelian
relations and ‘context-insensitive’ duality relations manifests itself at the met-
alogical as well as at the object-logical level.

All these remarks and observations point in the direction of a final, over-
arching conclusion: there exists a fundamental continuity between object- and
metalogical decorations of logical diagrams. The mathematical background

51Also see Section 2, in particular, the motivation for going from Definition 2.1 to 2.2.
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of this continuity was described in Section 2 (for Aristotelian diagrams) and
in Subsection 3.2 (for duality diagrams). Furthermore, since metalogical dec-
orations give rise to the same kinds of rich logical and linguistic behavior as
object-logical decorations, it is to be expected that over time, the former will
come to be as widely studied as the latter.
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[3] Béziau, J.-Y.: Paralogics and the Theory of Valuation. In: Carnielli, W.,
Coniglio, M., D’Ottaviano, I. (eds.) Universal Logic: An Anthology – From Paul
Hertz to Dov Gabbay, pp. 361–372. Springer, Basel (2012)
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[9] Béziau, J.-Y., Payette, G. (eds.) The Square of Opposition. A General Frame-
work for Cognition. Peter Lang, Bern (2012)
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(ed.) Encyclopedia of Logic. College Publications, London (2015)

[30] Demey, L., Smessaert, H.: Combinatorial Bitstring Semantics for Arbitrary
Logical Fragments. Submitted, 40pp. (2015)

[31] Demey, L., Smessaert, H.: Generating the Logical Relations. Manuscript (2015)

[32] Demey, L., Smessaert, H.: The Logical Geometry of the Aristotelian Rhombic
Dodecahedron. Manuscript (2015)

[33] Diaconescu, R.: The Algebra of Opposition (and Universal Logic Interpreta-
tions). In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic,
pp. 127–143. Springer, Basel (2015)

[34] Diestel, R.: Graph Theory, 4th Edition. Springer, Berlin (2010)

[35] Fitting, M., Mendelsohn, R.: First-Order Modal Logic. Kluwer, Dordrecht
(1998)

[36] Gottschalk, W. H..: The Theory of Quaternality. Journal of Symbolic Logic 18,
193–196 (1953)

[37] Hacker, E.: The Octagon of Opposition. Notre Dame Journal of Formal Logic
16, 352–353 (1975)

[38] Horn, L.: A Natural History of Negation. University of Chicago Press, Chicago,
IL (1989)

[39] Horn, L.: Histoire d’*O: Lexical Pragmatics and the Geometry of Opposition.
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Béziau, J.-Y., Payette, G. (eds.) The Square of Opposition. A General Frame-
work for Cognition, pp. 195–229. Peter Lang, Bern (2012)

[85] Zellweger, S.: Untapped Potential in Peirce’s Iconic Notation for the Sixteen
Binary Connectives. In: Houser, N., Roberts, D.D., Van Evra, J. (eds.) Studies in
the Logic of Charles Peirce, pp. 334–386. Indiana University Press, Bloomington
(1997)

Lorenz Demey
Center for Logic and Analytic Philosophy
KU Leuven
Belgium
e-mail: lorenz.demey@hiw.kuleuven.be

Hans Smessaert
Department of Linguistics
KU Leuven
Belgium
e-mail: hans.smessaert@arts.kuleuven.be


