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Russell on Aristotle and his Logic 13

“throughout modern times, practically every advance
in science, in logic, or in philosophy has had to be made
in the teeth of opposition from Aristotle’s disciples”
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Russell on Aristotle and his Logic 14

“ever since the beginning of the seventeenth century, almost every
serious intellectual advance has had to begin with an attack

on some Aristotelian doctrine; in logic, this is still true at the present day”
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Russell on Aristotle and his Logic 15

“even at the present day, all Catholic teachers of philosophy and many others
still obstinately reject the discoveries of modern logic,

and adhere with a strange tenacity to a system which is as definitely
antiquated as Ptolemaic astronomy”
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Russell’s Theory of Definite Descriptions 18

definite descriptions in natural language:
the president of the United States
the man standing over there
the so-and-so

they can occur in
subject position e.g. The president will be visiting France tomorrow.
predicate position e.g. Barack Obama is currently still the president.

Russell’s quantificational analysis of ‘the A is B’

∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Bx

)
Neale’s restricted quantifier notation

[the x : Ax]Bx
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[the x : Ax]Bx ≡FOL (ex) ∧ (un) ∧ (uv)

(ex) ∃xAx there exists at least one A
(un) ∀x∀y((Ax ∧Ay)→ x = y) there exists at most one A
(uv) ∀x(Ax→ Bx) all As are B

much of the subsequent literature on Russell’s quantificational theory of
definite descriptions has focused on one of these three conditions
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Russell’s Theory of Definite Descriptions 20

[the x : Ax]Bx ≡FOL (ex) ∧ (un) ∧ (uv)

(ex) ∃xAx there exists at least one A
(un) ∀x∀y((Ax ∧Ay)→ x = y) there exists at most one A
(uv) ∀x(Ax→ Bx) all As are B

much of the subsequent literature on Russell’s quantificational theory of
definite descriptions has focused on one of these three conditions

what is the linguistic status of (ex)?

Russell: (ex) is part of the truth conditions of ‘the A is B’
⇒ if (ex) is false, then ‘the A is B’ is false

Strawson: (ex) is a presupposition of ‘the A is B’
⇒ if (ex) is false, then ‘the A is B’ does not have a truth value at all
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[the x : Ax]Bx ≡FOL (ex) ∧ (un) ∧ (uv)

(ex) ∃xAx there exists at least one A
(un) ∀x∀y((Ax ∧Ay)→ x = y) there exists at most one A
(uv) ∀x(Ax→ Bx) all As are B

much of the subsequent literature on Russell’s quantificational theory of
definite descriptions has focused on one of these three conditions

the problem of incomplete definite descriptions (for which (un) fails)
e.g. the book is on the shelf⇒ there is at most one book in the universe

refinements and alternatives:
ellipsis theories (Vendler)
quantifier domain restriction theories (Stanley and Szabó)
pragmatic theories (Heim, Szabó)
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[the x : Ax]Bx ≡FOL (ex) ∧ (un) ∧ (uv)

(ex) ∃xAx there exists at least one A
(un) ∀x∀y((Ax ∧Ay)→ x = y) there exists at most one A
(uv) ∀x(Ax→ Bx) all As are B

much of the subsequent literature on Russell’s quantificational theory of
definite descriptions has focused on one of these three conditions

what about non-singular definite descriptions?
plurals e.g. The wives of King Henry VIII were pale.
mass nouns e.g. The water in the Dead Sea is very salty.

such descriptions also satisfy a version of (uv) (Sharvy, Brogaard)
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for a given logical system S (with Boolean connectives ∧,¬ and a
model-theoretical semantics |=), the formulas ϕ,ψ ∈ LS are

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ)

S-subcontrary iff S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ)
in S-subalternation iff S |= ϕ→ ψ and S 6|= ψ → ϕ

‘ϕ and ψ cannot be true together’
⇒ there exists no S-model M such that M |= ϕ ∧ ψ
⇒ for all S-models M it holds that M |= ¬(ϕ ∧ ψ)
⇒ S |= ¬(ϕ ∧ ψ)

‘ϕ and ψ can be false together’
⇒ there exists a S-model M such that M |= ¬ϕ ∧ ¬ψ
⇒ S 6|= ¬(¬ϕ ∧ ¬ψ)
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the Aristotelian relations are defined relative to a logical system S

e.g. there exist logical systems S1, S2 and
formulas ϕ,ψ ∈ LS1 ∩ LS2 such that

ϕ and ψ are S1-contradictory
ϕ and ψ are S2-contrary

the Aristotelian relations are defined up to logical equivalence

if ϕ ≡S ϕ
′ and ψ ≡S ψ

′,

then (ϕ,ψ) and (ϕ′, ψ′) stand in
the same Aristotelian relation in S
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ingredients: a logical system S as before and a finite set F ⊆ LS
contingent S 6|= ϕ and S 6|= ¬ϕ for all ϕ ∈ F
pairwise non-equivalent ϕ 6≡S ψ for all distinct ϕ,ψ ∈ F

(note: additional sources of logic-sensitivity in Aristotelian diagrams!)

some basic examples from CPL (classical propositional logic):
classical square
degenerate square
Jacoby-Sesmat-Blanché (JSB) hexagon
Buridan octagon

visual code:
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Boolean Closure 28

a diagram is Boolean closed iff it contains every contingent Boolean
combination of its formulas (up to logical equivalence)
Boolean closure of a diagram D =
smallest Boolean closed diagram that contains D as a subdiagram

The Logical Geometry of Definite Descriptions – L. Demey



Subdiagrams 29

assume that all Aristotelian diagrams are closed under negation
(and thus have an even number of formulas)
2n-formula diagram contains

(
n
m

)
= n!

m!(n−m)! 2m-formula subdiagrams

e.g. a hexagon contains
(
3
2

)
= 3 square subdiagrams
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Bitstrings 30

for a given logic S and fragment F of formulas,
define the partition ΠS(F) := {

∧
ϕ∈F ±ϕ} − {⊥}

mutually exclusive: S |= ¬(αi ∧ αj) for distinct αi, αj ∈ ΠS(F)
jointly exhaustive: S |=

∨
ΠS(F)

every ϕ ∈ F is S-equivalent to a disjunction of ΠS(F)-formulas

ϕ ≡S
∨
{α ∈ ΠS(F) | S |= α→ ϕ}

(relativized disjunctive normal form)

bitstrings keep track which formulas enter into this disjunction

suppose ΠS(F) = {α1, α2, α3, α4, α5}
suppose ϕ ≡S α2 ∨ α3 ∨ α5

then we represent ϕ as the bitstring 01101
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bitstrings measure the Boolean complexity of F
bitstring length: |ΠS(F)|
the Boolean closure of F contains 2|ΠS(F)| − 2 contingent formulas

if F = F1 ∪ F2, then ΠS(F) = ΠS(F1) ∧S ΠS(F2)
= {α ∧ β | α ∈ ΠS(F1), β ∈ ΠS(F2), α ∧ β is S-consistent}

one logical system S
two fragments F1,F2

if S2 is a stronger logical system than S1,
then ΠS2(F) = {α ∈ ΠS1(F) | α is S2-consistent}

one fragment F
two logical systems S1,S2
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An Aristotelian Square for Definite Descriptions 33

Aristotelian relations/diagrams: a theory of negation
Russell: what is the negation of ‘the A is B’?

law of excluded middle ⇒ ‘the A is B’ is true or ‘the A is not B’ is true
but if there are no As, then both statements seem to be false

Russell: ‘the A is not B’ is ambiguous (scope)

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Bx

)
¬[the x : Ax]Bx

∃x
(
Ax ∧ ∀y(Ay → y = x) ∧ ¬Bx

)
[the x : Ax]¬Bx

first interpretation:
Boolean negation of ‘the A is B’
if there are no As, then [the x : Ax]Bx is false, ¬[the x : Ax]Bx is true

second interpretation:
if there are no As, then [the x : Ax]Bx and [the x : Ax]¬Bx are false
not the Boolean negation of ‘the A is B’
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crucial insight: the two interpretations of ‘the A is not B’ distinguished
by Russell stand in different Aristotelian relations to ‘the A is B’

[the x : Ax]Bx and ¬[the x : Ax]Bx are FOL-contradictory
[the x : Ax]Bx and [the x : Ax]¬Bx are FOL-contrary

cf. Haack (1965), Speranza and Horn (2010, 2012)

natural move: consider a fourth formula (with two negations)

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Bx

)
¬[the x : Ax]Bx

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧Bx

)
¬[the x : Ax]Bx

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧ ¬Bx

)
¬[the x : Ax]¬Bx

¬∃x
(
Ax ∧ ∀y(Ay → y = x) ∧ ¬Bx

)
¬[the x : Ax]¬Bx

in FOL, these four formulas constitute a classical square of opposition
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An Aristotelian Square for Definite Descriptions 36

this square is fully defined in ‘ordinary’ FOL ⇒ acceptable for Russell

summarizes Russell’s solution to puzzle on law of excluded middle

interesting new formula: ¬[the x : Ax]¬Bx

expresses a weak version of ‘the A is B’
¬[the x : Ax]¬Bx ≡FOL [(ex) ∧ (un)]→ [the x : Ax]Bx

hence:
I if there is exactly one A,

[the x : Ax]Bx and ¬[the x : Ax]¬Bx always have the same truth value
I in all other cases,

[the x : Ax]Bx is always false, whereas ¬[the x : Ax]¬Bx is always true

not only an Aristotelian square, but also a duality square
(internal/external negation)
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this Aristotelian square for definite descriptions is not Boolean closed
it misses two contingent Boolean combinations:

[the x : Ax]Bx ∨ [the x : Ax]¬Bx ≡FOL ¬[(ex) ∧ (un)]
¬[the x : Ax]Bx ∧ ¬[the x : Ax]¬Bx ≡FOL ¬[(ex) ∧ (un)]

adding these two formulas to the square yields its Boolean closure
⇒ a JSB hexagon for definite descriptions

cf. importance of the (ex)- and (un)-conditions

The Logical Geometry of Definite Descriptions – L. Demey



Boolean Closure of the Definite Description Square 38

The Logical Geometry of Definite Descriptions – L. Demey



Subdiagrams of the JSB Hexagon 39

this JSB hexagon has three square subdiagrams:
the definite description square that we started with
two other squares: see below

⇒ symmetry of [the x : Ax]Bx and [the x : Ax]¬Bx
⇒ with respect to the (ex)- and (un)-conditions
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consider the formulas in the definite descripton square/hexagon
these formulas induce the partition ΠFOL

TDD:
α1 := [the x : Ax]Bx
α2 := [the x : Ax]¬Bx
α3 := ¬[(ex) ∧ (un)]

example bitstring representations:
[the x : Ax]Bx ≡FOL α1  gets represented as 100
¬[the x : Ax]¬Bx ≡FOL α1 ∨ α3  gets represented as 101

logical perspective: the Boolean closure of the square/hexagon has
23 − 2 = 6 contingent formulas

conceptual/linguistic perspective: recursive partitioning of logical space
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Linguistic Relevance of the Bitstring Analysis 42

view ΠFOL
TDD as the result of a process of recursively

partitioning and restricting logical space (Seuren, Jaspers, Roelandt)

divide the logical universe: (ex) ∧ (un) vs. ¬[(ex) ∧ (un)]
focus on the logical subuniverse defined by (ex) ∧ (un)
recursively divide this subuniverse: [the x : Ax]Bx vs. [the x : Ax]¬Bx
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Linguistic Relevance of the Bitstring Analyis 43

another look at the ambiguity pointed out by Russell
‘the A is B’ unambiguously corresponds to [the x : Ax]Bx = 100
relative to the entire universe, its negation is ¬[the x : Ax]Bx = 011
relative to the subuniverse (110), its negation is [the x : Ax]¬Bx = 010

⇒ Russell’s two interpretations of ‘the A is not B’ correspond to
⇒negations of ‘the A is B’ relative to two different universes
⇒(semantic instead of syntactic characterization)

Seuren and Jaspers’s (2014) defeasible Principle of Complement
Selection: “Natural complement selection is primarily relative to the
proximate subuniverse, but there are overriding factors.”

overriding factors: intonation, additional linguistic material (Horn 1989)

the largest prime is not even; in fact, there doesn’t exist a largest prime
the prime divisor of 30 is not even; in fact, 30 has multiple prime divisors
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The Categorical Statements 45

the four categorical statements from syllogistics:
A all As are B ∀x(Ax→ Bx)
I some As are B ∃x(Ax ∧Bx)
E no As are B ∀x(Ax→ ¬Bx)
O some As are not B ∃x(Ax ∧ ¬Bx)

already implicit in the definite description formulas

¬[the x : Ax]¬Bx ≡FOL (ex) ∧ (un) ∧ (uv)
¬[the x : Ax]¬Bx ≡FOL ¬(ex) ∨ ¬(un) ∨ ¬(uv)
¬[the x : Ax]¬Bx ≡FOL (ex) ∧ (un) ∧ (uv∗)
¬[the x : Ax]¬Bx ≡FOL ¬(ex) ∨ ¬(un) ∨ ¬(uv∗)

¬(uv) ≡FOL ∀x(Ax→ Bx) = A
¬(uv) ≡FOL ∃x(Ax ∧ ¬Bx) = O
¬(uv∗) ≡FOL ∀x(Ax→ ¬Bx) = E
¬(uv∗) ≡FOL ∃x(Ax ∧Bx) = I
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Bitstring Analysis and Degenerate Square 46

first-order logic (FOL) has no existential import

the categorical statements induce the partition ΠFOL
CAT:

β1 := ∃xAx ∧ ∀x(Ax→ Bx)
β2 := ∃x(Ax ∧Bx) ∧ ∃x(Ax ∧ ¬Bx)
β3 := ∃xAx ∧ ∀x(Ax→ ¬Bx)

β4 := ¬∃xAx (recursive partitioning)

the categorical statements constitute a degenerate square
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Definite Descriptions and Categorical Statements 47

there is a subalternation from [the x : Ax]Bx to the A-statement
FOL |= [(ex) ∧ (un) ∧ (uv)]→ (uv)
but not vice versa

there is a subalternation from [the x : Ax]Bx to the I-statement
FOL |= [(ex) ∧ (uv)]→ ¬(uv∗)
so a fortiori FOL |= [(ex) ∧ (un) ∧ (uv)]→ ¬(uv∗)
but not vice versa

and so on. . .

summary:

the interaction between the definite description formulas and the
categorical statements gives rise a Buridan octagon

subdiagrams:
(

4
2

)
= 6 squares,

(
4
3

)
= 4 hexagons
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the definite descriptions induce the partition ΠFOL
TDD

the categorical statements induce the partition ΠFOL
CAT

⇒ together, they induce the partition ΠFOL
OCTA = ΠFOL

TDD ∧FOL ΠFOL
CAT

γ1 := ∃x∃y(Ax ∧Ay ∧ x 6= y) ∧ ∀x(Ax→ Bx)
γ2 := ∃x(Ax ∧Bx) ∧ ∃x(Ax ∧ ¬Bx)
γ3 := ∃x∃y(Ax ∧Ay ∧ x 6= y) ∧ ∀x(Ax→ ¬Bx)
γ4 := [the x : Ax]Bx
γ5 := [the x : Ax]¬Bx
γ6 := ¬∃xAx

ΠFOL
OCTA is a refinement of ΠFOL

TDD
⇒ γ4 = α1 and γ5 = α2, while γ1 ∨ γ2 ∨ γ3 ∨ γ6 ≡FOL α3

ΠFOL
OCTA is a refinement of ΠFOL

CAT
⇒ γ2 = β2 and γ6 = β4, while γ1 ∨ γ4 ≡FOL β1 and γ3 ∨ γ5 ≡FOL β3

The Logical Geometry of Definite Descriptions – L. Demey



Bitstring Analysis 50

ΠFOL
OCTA allows us to encode every formula of the Buridan octagon

the Boolean closure of this octagon has 26− 2 = 62 contingent formulas
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ΠFOL
OCTA is ordered along two semi-independent dimensions

the cardinality of (the extension of) A
the proportion of As that are B

semi-independent: higher cardinalities allow for
semi-independent: more fine-grained proportionality distinctions

ongoing work on linguistic aspects:
plausible partitioning process?
split the ‘≥ 2’-region into ‘≥ 3’- and ‘= 2’-subregions (‘both’, ‘neither’)
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recent work on existential import in syllogistics
(Seuren, Chatti and Schang, Read)

for every categorical statement ϕ, define
variant ϕimp! that explicitly has existential import ∃xAx ∧ ϕ
variant ϕimp? that explicitly lacks existential import ¬∃xAx ∨ ϕ

Aimp? ≡FOL ∀x(Ax→ Bx) ≡FOL ¬(uv)
Iimp! ≡FOL ∃x(Ax ∧Bx) ≡FOL ¬(uv∗)
Eimp? ≡FOL ∀x(Ax→ ¬Bx) ≡FOL ¬(uv∗)
Oimp! ≡FOL ∃x(Ax ∧ ¬Bx) ≡FOL ¬(uv)

Aimp! ≡FOL ∃xAx ∧ ∀x(Ax→ Bx) ≡FOL ¬(ex) ∧ ¬(uv)
Iimp? ≡FOL ¬∃xAx ∨ ∃x(Ax ∧Bx) ≡FOL ¬(ex) ∨ ¬(uv∗)
Eimp! ≡FOL ∃xAx ∧ ∀x(Ax→ ¬Bx) ≡FOL ¬(ex) ∧ ¬(uv∗)
Oimp? ≡FOL ¬∃xAx ∨ ∃x(Ax ∧ ¬Bx) ≡FOL ¬(ex) ∨ ¬(uv)
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closely related to our 8 formulas:
first 4: the ‘usual’ categorical statements (A, I, E, O)
next 4: the definite descriptions formulas modulo (un)

Chatti and Schang: these 8 also constitute a Buridan octagon

bitstring analysis: partition {Aimp!, Iimp! ∧ Oimp!,Eimp!,¬∃xAx} = ΠFOL
CAT
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Buridan octagon for definite description formulas
and categorical statements

induces the partition ΠFOL
OCTA

its Boolean closure has 26 − 2 = 62 formulas
[the x : Ax]Bx 6≡FOL A ∧ I (000100 6= 100101 ∧ 110100)

Buridan octagon for categorical statements
that explicitly have/lack existential import

induces the partition ΠFOL
CAT

its Boolean closure has 24 − 2 = 14 formulas
Aimp! ≡FOL Aimp? ∧ Iimp! (1000 = 1001 ∧ 1100)

summary:
one and the same Aristotelian type (Buridan)
different Boolean subtypes
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until now: only worked in ordinary first-order logic (FOL)
Chatti and Schang: deal with existential import by adding (¬)∃xAx as
conjunct/disjunct to the categorical statements

alternative approach:
existential import 6= property of individual formulas
existential import = property of underlying logical system

introduce new logical system SYL
SYL = FOL + ∃xAx
interpreted on FOL-models 〈D, I〉 such that I(A) 6= ∅
quantificational logics FOL vs. SYL! modal logics K vs. D
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The Role of Existential Import 57

move from FOL to SYL

influence on the categorical statements:
e.g. A and E are independent in FOL, but become contrary in SYL, etc.
degenerate square turns into classical square

no influence on the definite description formulas:
e.g. [the x : Ax]Bx and [the x : Ax]¬Bx are contrary in FOL,
and remain so in SYL
classical square remains classical square

no influence on the interaction between definite descriptions and
categorical statements:

e.g. subalternation from [the x : Ax]Bx to A and I in FOL,
and this remains so in SYL

from Buridan octagon to Lenzen octagon
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what partition ΠSYL
OCTA is induced?

SYL is a stronger logical system than FOL
consider ¬∃xAx = γ6 ∈ ΠSYL

OCTA: FOL-consistent, but SYL-inconsistent
ΠSYL

OCTA = ΠFOL
OCTA − {γ6}

inverse correlation between axiomatic strength and Boolean complexity
FOL  Buridan octagon  Boolean closure of 26 − 2 = 62 contingencies
SYL  Lenzen octagon  Boolean closure of 25 − 2 = 30 contingencies

deleting the sixth bit position ⇒ unified perspective on all changes:
A (100101) and E (001011) change from unconnected to contary
I (110100) and O (011010) change from unconnected to subcontrary
A (100101) and I (110100) change from unconnected to subaltern
[the x : Ax]Bx (000100) and [the x : Ax]Bx (000010) are contrary and
remain so
[the x : Ax]Bx (000100) and A (100101) are subaltern and remain so
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(ex) and (un) play complementary roles in Russell’s theory

introduce new logical system SYL*
SYL* = FOL + ∀x∀y((Ax ∧Ay)→ x = y)
interpreted on FOL-models 〈D, I〉 such that |I(A)| ≤ 1

move from FOL to SYL*

no influence on the definite description formulas
e.g. [the x : Ax]Bx and [the x : Ax]¬Bx are contrary in FOL,
and remain so in SYL
classical square remains classical square

influence on the categorical statements:
e.g. A and E are independent in FOL, but become subcontrary in SYL
degenerate square turns into classical square
note: this square is ‘flipped upside down’ !
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move from FOL to SYL*

influence on the interaction between definite descriptions and
categorical statements

e.g. [the x : Ax]Bx and the E-statement go from FOL-contrary to
SYL*-contradictory
e.g. in FOL there is a subalternation from [the x : Ax]Bx to the
I-statement, but in SYL* they are logically equivalent to each other

pairwise collapse of def. descr. formulas and categorical statements:

¬[the x : Ax]Bx ≡SYL∗ I = ∃x(Ax ∧Bx),
¬[the x : Ax]Bx ≡SYL∗ E = ∀x(Ax→ ¬Bx),
¬[the x : Ax]¬Bx ≡SYL∗ O = ∃x(Ax ∧ ¬Bx),
¬[the x : Ax]¬Bx ≡SYL∗ A = ∀x(Ax→ Bx).

from Buridan octagon to collapsed (flipped) classical square
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elementary calculation yields the partition ΠSYL∗

COLL
= {∃xAx ∧ ∀x(Ax→ Bx),∃xAx ∧ ∀x(Ax→ ¬Bx),¬∃xAx}

ΠSYL∗

COLL = ΠFOL
OCTA − {γ1, γ2, γ3}

SYL* is a stronger logical system than FOL
γ1, γ2, γ3 are FOL-consistent, but SYL*-inconsistent

ΠSYL∗

COLL = ΠFOL
TDD

ΠFOL
TDD is the partition for the def. descr. square in FOL

moving from FOL to SYL* did not change this square
but did cause it to coincide with the categorical statement square

ΠSYL∗

COLL = ΠFOL
CAT − {β2}

ΠFOL
CAT is the partition for the cat. statement square in FOL

SYL* is a stronger than FOL; β2 is FOL-consistent, but SYL*-inconsistent
moving from FOL to SYL* triggered change from degen. square to
(flipped) classical square, which coincides with the def. descr. square
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the categorical statements yield a flipped classical square in SYL*
⇒ quantification over a domain of at most one element (|I(A)| ≤ 1)

similar situation in public announcement logic (PAL) (Demey 2012)

standard semantics: model update operation (M, w) 7→ (Mϕ, wϕ)

(M, w) |= [!ϕ]ψ iff if (M, w) |= ϕ then (Mϕ, wϕ) |= ψ,
(M, w) |= 〈!ϕ〉ψ iff (M, w) |= ϕ and (Mϕ, wϕ) |= ψ.

informal quantificational interpretation:
[!ϕ]ψ iff after all public announcements of ϕ, it holds that ψ
[!ϕ]ψ iff after at least one public ann. of ϕ, it holds that ψ
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informal quantificational interpretation: [!ϕ] and 〈!ϕ〉 as
universal/existential quantifiers over the set of public ann. of ϕ

since (M, w) 7→ (Mϕ, wϕ) is a partial function, the set of all public
announcements of ϕ contains at most one element

if (M, w) |= ϕ, then (Mϕ, wϕ) is uniquely defined,
i.e. there is exactly one public announcement of ϕ
if (M, w) 6|= ϕ, then (Mϕ, wϕ) is undefined,
i.e. there is no public announcement of ϕ
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1 Introduction

2 Preliminaries about Definite Descriptions and Logical Geometry

3 Basic Aristotelian Diagrams for Definite Descriptions

4 Definite Descriptions and Categorical Statements

5 The Role of Existence and Uniqueness

6 Conclusion
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Aristotelian diagrams for Russell’s theory of definite descriptions
classical square, JSB hexagon, Buridan octagon. . .
the formula ¬[the x : Ax]¬Bx and its interpretation,
negations of [the x : Ax]Bx relative to different subuniverses. . .

phenomena and techniques studied in logical geometry
bitstring analysis, Boolean closure, subdiagrams. . .
Boolean subtypes, logic-sensitivity. . .

The Logical Geometry of Definite Descriptions – L. Demey



The End 69

Thank you!

More info: www.logicalgeometry.org

The Logical Geometry of Definite Descriptions – L. Demey

http://www.logicalgeometry.org
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